Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study introduces a novel uninterruptible power supply (UPS) configuration that integrates active power filter (APF) capabilities within a single-phase matrix converter (SPMC) framework. Power disruptions, particularly affecting critical loads, can lead to substantial economic damages. Historically, conventional UPS systems utilized dual separate converters to function as a rectifier and an inverter, without incorporating any power factor correction (PFC) mechanisms. Such configurations suffered from diminished power density, compromised reliability, and spatial limitations. To address these issues, this research proposes an enhanced UPS design that incorporates APF features into the SPMC. The focus of this investigation is on the efficiency of alternating current (AC) to direct current (DC) conversion and the reverse process utilizing this advanced UPS model. The SPMC is selected to supplant the rectifier and inverter units traditionally employed in UPS architectures. A novel integrated switching strategy is formulated to facilitate the operation of the UPS in either rectifier (charging) or inverter (discharging) modes, contingent upon the operational state. The performance and efficacy of the devised circuit design and switching technique are substantiated through simulations conducted in MATLAB/Simulink 2019 and empirical evaluations using a test rig. The findings demonstrate that the voltage generated is sinusoidal and synchronized with the supply current, thereby minimizing the total harmonic distortion (THD) and enhancing both the power factor and the transition efficiency of the UPS system between its charging and discharging states.

Details

Title
Uninterruptible Power Supply Topology Based on Single-Phase Matrix Converter with Active Power Filter Functionality
Author
Muhammad Shawwal Mohamad Rawi 1 ; Rahimi Baharom 1 ; Mohd Amran Mohd Radzi 2   VIAFID ORCID Logo 

 School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA (UiTM), Shah Alam 40450, Malaysia; [email protected] 
 Advanced Lightning, Power and Energy Research (ALPER), Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia; [email protected] 
First page
3441
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3084748826
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.