Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The problems with current driving datasets are their exclusivity to autonomous driving applications and their limited diversity in terms of sources of information and number of attributes. Thus, this paper presents a novel driving dataset that contains information from several heterogeneous sources and targets road traffic safety applications. We used an acquisition module based on software and hardware to collect information from a vehicle scanner and a health monitor. This module also consumes information from a weather web service and databases on traffic accidents and road geometric characteristics. For the acquisition sessions, drivers of different ages and genders drove vehicles on two routes at different day hours in different weather conditions. POLIDriving contains around 18 h of driving data, more than 61k observations, and 32 attributes. Unlike the other related datasets that include information on vehicle and road conditions, POLIDriving also includes information on the driver, weather conditions, traffic accidents, and road geometric characteristics. The dataset was tested in learning models to predict the risk levels of suffering a traffic accident. Hence, we built two learning models: Gradient Boosting Machine (GBM) and Multilayer Perceptron (MLP). GBM reached an accuracy value of 95.6%, and MLP reached an accuracy of 98.6%. Undoubtedly, POLIDriving will contribute greatly to the research on traffic accident prevention by providing a novel, numerous, and diverse driving dataset.

Details

Title
POLIDriving: A Public-Access Driving Dataset for Road Traffic Safety Analysis
Author
Marcillo, Pablo  VIAFID ORCID Logo  ; Arciniegas-Ayala, Cristian  VIAFID ORCID Logo  ; Ángel Leonardo Valdivieso Caraguay  VIAFID ORCID Logo  ; Sanchez-Gordon, Sandra  VIAFID ORCID Logo  ; Hernández-Álvarez, Myriam  VIAFID ORCID Logo 
First page
6300
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3084770071
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.