Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The increase in energy consumption in Bahrain is a significant issue. Insulation blocks are crucial for reducing heat transfer from outside to inside buildings. However, there’s limited research on the thermal performance of Bahrain’s insulation building blocks. No research to date has been conducted in Bahrain to study the effect of plaster and insulation inserts on the R-value of the blocks. This study examines and optimizes the thermal resistance (R-value) of an ‘Integrated Masonry System International, Ltd. (IMSI)’ block, chosen due to its common use in Bahrain’s commercial and residential construction. The study involves experimental analysis using a hot box setup and numerical analysis through the finite element method (FEM), along with assessing the impact of insulation inserts in the block’s cavities. R-values are calculated and validated for accuracy. The R-value discrepancy between numerical and experimental findings is 2.411%, and between numerical and manufacturer’s data is 5.743%. It is also observed that a 25 mm external plaster, as required by Bahrain’s government (EWA), enhances the R-value by 79.34%. Furthermore, optimizing the IMSI block’s height increased the R-value by 10.67%.

Details

Title
Experimental and Numerical Heat Transfer Assessment and Optimization of an IMSI Based Individual Building Block System of the Kingdom of Bahrain
Author
Payal Ashish Modi 1   VIAFID ORCID Logo  ; Abdelgadir, Mohamed Mahmoud 1   VIAFID ORCID Logo  ; Yousif Abdalla Abakr 2 ; Abdulla Ebrahim Abdulqader 3 

 Razak Faculty of Tech and Informatics, University of Technology, Kuala Lumpur 54100, Malaysia; [email protected] 
 Department of Mechanical Engineering, Nottingham University, Semenyih 43500, Malaysia; [email protected] 
 Department of Mechanical Engineering, Bahrain Polytechnic, Isa Town P.O. Box 33349, Bahrain; [email protected] 
First page
2012
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20755309
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3084782777
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.