1. Introduction
The tropical turfgrass Stenotaphrum Trin has both feed and ornamental value [1]. Due to its much greater shade tolerance than that of other warm-season turfgrasses, Stenotaphrum species are preferred for use in shaded landscapes in tropical and subtropical regions [2,3]. However, its poor cold tolerance severely restricts its use in temperate regions [4,5,6]. Given the need for shade-tolerant turfgrasses in the temperate regions of East China, the use of Stenotraphrum requires the identification and use of cold-resistant germplasm for acceptance and application by the public.
Unlike annual plants such as wheat that do not undergo the fall dormancy process, perennial turfgrass with strong cold resistance should have both the advantages of delayed fall dormancy and early spring green-up [7,8,9]. Field and laboratory evaluations are commonly used for evaluating cold resistance. Field evaluation is considered as a relatively accurate method of evaluating cold resistance. However, field evaluations mainly focus on the performance of green-up in the following year, with less attention paid to the performance of fall dormancy [10,11]. Electrolyte leakage and tissue regrowth measurements are common laboratory methods used to assess cold tolerance in turfgrass species [5,12,13]. Electrolyte leakage has been shown to poorly represent the actual cold tolerance [14,15,16]. Measurements of tissue regrowth have also been shown to be poorly correlated with cold resistance [4,17,18]. These methods are likely not reflective of actual cold tolerance because they do not account for a plant’s ability to retain colour in the fall or an ability to green-up earlier in the spring. Therefore, the objective of this research was to measure both fall dormancy and spring green-up to assess the cold tolerance of Stenotaphrum breeding lines and to compare this assessment to electrolyte leakage and stolon regrowth following exposure to cold.
Stenotaphrum plants can be divided into seven categories (
Specifically, this study first dynamically investigated the leaf colour during the fall dormancy and the coverage during the spring green-up of 55 Stenotaphrum Trin resources and evaluated their cold resistance by integrating the two-index using a membership function. By analysing the correlation between autumn/winter leaf colour and next year’s green-up coverage, as well as comparing the growth performance of a single growth period with the ranking of a comprehensive evaluation, whether this method can be simplified by the growth performance of the fall dormancy or spring green-up is clarified. Furthermore, the cold resistance of these resources was evaluated through the laboratory-based cold resistance evaluation methods (leaf LT50 and stolon regrowth analysis) and was ranked and clustered through membership functions and cluster analysis. Whether field evaluation methods can be replaced by laboratory evaluation methods was determined by comparing the differences between laboratory cold resistance evaluation data and field evaluation data. By conducting a correlation analysis between field evaluation data and laboratory evaluation data, the reasons for the differences between field evaluation and laboratory evaluation were clarified. Through the above series of experiments, this study ultimately presented a method to compensate for the shortcomings of the current evaluation methods for the cold resistance of turfgrass and clarified whether this improved method can be simplified or replaced by other methods.
2. Materials and Methods
2.1. Accession Information
Eighty domestic and foreign accessions of Stenotaphrum were collected for cold tolerance evaluation. These accessions came from China (63), the United States (10), South Africa (3), Zimbabwe (1), Australia (1), Argentina (1), and Vanuatu (1). At one year of planting in Nanjing, China, only 55 accessions had survived, i.e., 25 accessions did not survive the winter. Among the 55 surviving accessions, 41 were sourced from China, 8 from the United States, 2 from South Africa, 1 from Zimbabwe, 1 from Australia, 1 from Argentina, and 1 from Vanuatu (Supplementary Table S1). Specifically in China, the strains were obtained from Fujian Province (14), Hainan Province (14), Yunnan Province (5), Guangxi Province (5), and Guangdong Province (3) and conformed to the distribution characteristics of Stenotaphrum (
2.2. Plant Growth Conditions
The 50 accessions for the potted experiment were planted in flower pots with a bottom diameter of 18 cm. The flower pot was filled with half soil and half sand. Each accession contained three replicates. All the accessions were cultivated in the turfgrass nursery of Nanjing Botanical Garden Mem. Sun Yat-Sen, China. Compound fertilizer was applied once a month [31]. The dosage used was 0.5 g/pot for the pot experiments. The lowest temperature in winter was −10 °C. The detailed climate information is listed in Supplementary Table S2.
2.3. Investigation of Leaf Colour during the Fall Dormancy and Coverage during the Spring Green-Up
From the end of October 2022 to the middle of December 2022, photos of potted accessions were taken during the fall dormancy. The interval at which the images were taken was 7 days. The leaf colour was scored according to the GBT30395-2013 standard as previous reported [32,33,34,35].
From the end of April 2023 to the beginning of June 2023, photos of potted accessions were taken during the green-up. The rate of green-up was obtained through visual inspection [32,33,34,36].
2.4. LT50
The experiment was conducted in September 2023. According to previous methods [37], the lethal temperature killing 50% of the plants (LT50) was determined by the electrolyte leakage method, and each treatment included 4 replicates. Briefly, the leaves of healthy plants were removed and rinsed 3 times with deionized water, after which the water that clung to the leaf surface was removed with filter paper. The leaves were cut to a length of approximately 0.5 cm and divided into 5 parts (2 g each). The samples were treated in a cryogenic circulator (Polyscience Company, Warrington, PA, USA), followed by an overnight pre-culture at 4 °C. The low-temperature gradients were set to 4, −1, −6, −11, and −16 °C. After thawing at 4 °C, the electrolyte was extracted by adding 20 mL of deionized water. The conductivity was measured with a conductivity meter (Shanghai Leici Instrument, Shanghai, China) before and after the samples were boiled in a water bath for 15 min.
The LT50 was obtained by fitting the logistic growth equation:
where Y is the electrolyte leakage, x is the temperature, and YM and Y0 are the maximal and initial electrolyte leakage. K is the rate constant. The LT50 is the x value where Y equals 50%.2.5. Stolon Regrowth Experiments
The experiment was conducted in September 2023. Using the methods in [38], stolon regrowth was evaluated via the number of stolons regenerated after low-temperature treatment. The stolons with 5 nodes were treated with 5 temperature gradients (8, 3, −2, −7, and −12 °C). Each treatment included 3 replicates (10 stolons per replicate). After thawing at 4 °C for 24 h, the stolons were planted in plugs filled with half soil and half sand. After 7 days of cultivation in the laboratory, the number of regrowing stolons was determined.
2.6. Membership Function Analysis
The comprehensive cold tolerance evaluation was carried out using the membership function method [39,40,41]. Briefly, the subordination function value of the average greenness, average coverage, and total relative regrowth rates were calculated by the following equation:
whereas the subordination function value of the LT50 was calculated by the following equation: i: a certain material, j: the index, U: the membership grade, Xij: the measured value of the index in a certain material, Ximin: the minimum value of the index in material i, and Ximax: the maximum value of the index in material i.2.7. Data Statistics and Graphing
The cluster analysis was performed by using squared Euclidean distance coefficient and linkage between groups cluster method in SPSS 19.0 software. Correlation analysis was conducted using Graphpad Prism 9.5 software. For the tables, the data presented are the means ± standard error of at least three replicates. The differences among accessions in a same column was assessed using SPSS 19.0 software and a significant difference is indicated by different letters.
3. Results
3.1. Investigation of Leaf Greenness during the Fall Dormancy and the Coverage during the Spring Green-Up Using the Pot Experiment
Since only 55 accessions survived a winter among the 80 accessions (Supplementary Table S1), detailed cold tolerance evaluations were conducted on the surviving 55 accessions. The investigation of leaf greenness began at the end of October and lasted until late December. As autumn and winter continued, the leaf greenness of Stenotaphrum gradually decreased and all the accessions progressed to a withered yellow state at the end of the monitoring period (Table 1). To objectively reflect the trend of changes in greenness, we averaged the data from 8 time points and obtained the average greenness. This indicator was subsequently used to rank the greenness of the 55 accessions in autumn and winter. The greater the average greenness was, the longer the green period was during the fall dormancy. The average greenness of these accessions varied greatly, ranging from 4.625 to 1.375. The three accessions with the highest average greenness were ST003, S12, and 674925-1. The three accessions with the lowest average greenness were S01, S27, and S28.
The investigation of coverage began at the end of April and lasted until early June. As the green-up period progressed, the grass gradually turned green, and by the end of monitoring, most accessions had approached a complete green-up state (Table 2). To objectively reflect the trend of this green-up change, we averaged the greening coverage at four-time points and obtained the average coverage. By using this indicator, the average coverage of the 55 accessions during the green-up was ranked. A higher average coverage indicates the faster green-up ability of an accession. The average coverage varied greatly among the accessions, ranging from 85% to 9%. The three accessions with the highest average coverage were 291594, S62, and S13. The three accessions with the lowest average coverage were S02, S10, and S28.
3.2. Membership Function Analysis and Cluster Analysis Based on Pot Experiment Results
The data for the leaf colour during the fall dormancy and the turfgrass coverage during the spring green-up was analysed using membership function analysis. The score obtained was used to rank the cold tolerance. The cold tolerance varied greatly among the accessions, ranging from 0.87 to 0. The three accessions with the highest cold tolerance were ST003, S13, and S12. The three accessions with the lowest cold tolerance were S27, S02, and S28 (Table 3). The picture of these six accessions at fall dormancy and spring green-up was presented in Supplementary Figure S1. Cluster analysis revealed that these accessions were divided into two categories: cold tolerant and cold sensitive (Figure 1). The cold tolerance category can be further subdivided into two subcategories: super cold-tolerance and middle cold-tolerance. The cold sensitive category can be subdivided into two subcategories: super cold-sensitive and middle cold-sensitive (Figure 1). The accessions ranking 1–13 are mainly concentrated in the super cold-tolerant subcategory. The accessions ranking 14–46 are mainly concentrated in middle cold-tolerant subcategory. Those that ranked 47–51 are gathered in the middle cold-sensitive subcategory, and those that ranked 52–55 are gathered in the super cold-sensitive subcategory (Figure 1).
The correlation analysis revealed that a positive correlation existed between autumn/winter leaf greenness and the turfgrass coverage during the spring green-up (Figure 2). Accessions with delayed fall dormancy will have an early spring green-up rate. However, the poor R2 (0.1682) indicates a weak correlation, suggesting that it is inappropriate to simplify the cold resistance evaluation by investigating the growth performance of a single period. This result was further confirmed by the discrepancy between the ranking of autumn leaf colour or spring coverage rate and the ranking of comprehensive evaluation (Table 3).
3.3. Laboratory-Based Leaf LT50 and Stolon Regrowth Rate Analysis
To investigate whether the pot evaluation can be replaced by the laboratory-based cold resistance evaluation methods, we conducted leaf LT50 and stolon regrowth rate analysis. The cold tolerance of the leaves was measured through an electrolyte leakage test (Table 4). Logistic equation fitting was performed on the relative conductivity of each accession, and the fitting degree (R2) of each equation was greater than 0.86, indicating that the equation fit was good and that the obtained LT50 was highly reliable. A more negative LT50 value indicates a greater cold tolerance ability for leaves. A significant difference in leaf LT50 was detected among the accessions, ranging from −9.32 to 3.45. The three accessions with the most favourable LT50 values were S39, S005, and 410364. The three accessions with the lowest LT50 values were S11, S006, and S27.
Since the spring green-up of Stenotaphrum depends on the budding of the stolons, the regrowth ability of the stolons was evaluated. For all the accessions, as the temperature during the low-temperature pre-treatment decreased, the ability of the stolons to regrow significantly decreased. At −7 °C, most accessions lost their ability to regrow, while at −12 °C, all accessions lost their ability to regrow (Table 5). Given the significant differences in the ability of the accessions to regrow at relatively normal temperatures (8 °C), the regrowth ability of stolons at 8 °C was used as a control and the regrowth ability of stolons under other temperature treatments was standardized. The total relative regrowth rate of stolons at low temperatures was subsequently obtained by averaging the total relative regrowth rate of stolons at −3 °C, −2 °C, and −7 °C. A higher total relative regrowth rate indicates a greater ability for stolons to regrow in the next year. The total relative regrowth rate varied greatly among the accessions, ranging from 52% to 13%. The top three accessions in terms of total relative regrowth rate were S30, S39, and S25. The three accessions with the lowest total relative regrowth rates were S27, S10, and 300129.
3.4. Membership Function Analysis and Cluster Analysis Based on Laboratory Results
The score and rank based on the laboratory results were obtained by membership function analysis (Table 6). A significant difference between the laboratory-based rank and the pot-evaluated rank was detected, and the coincidence degree between them was poor (Table 3 and Table 6). Cluster analysis revealed that these accessions could be divided into two categories and three subcategories based on the laboratory results (Figure 3). Specifically, the accessions ranking 1–9 are clustered in one subcategory (cold-tolerant). The accessions ranking 10–50 are clustered in one subcategory (middle cold-sensitive), while those rankings 51–55 are clustered in one subcategory (super cold-sensitive) (Figure 3). A very poor consistency with the clustering results between the pot evaluation and the laboratory-based evaluation was found (Figure 1 and Figure 3).
3.5. Correlation Analysis between the Laboratory-Based Data and the Pot Analysis Data
A correlation analysis was conducted between LT50 and other data. It was found that LT50 was not correlated with the average greenness during the autumn/winter nor average coverage during the spring green-up but was correlated with the total relative regrowth rate (Figure 4).
A correlation analysis was conducted between the total relative regrowth rate and other data. It was found that the total relative regrowth rate was not correlated with average greenness but was positively correlated with average coverage during the spring green-up (Figure 5).
4. Discussion
4.1. Establishment of a Method for Evaluating the Cold Tolerance of Stenotaphrum by Integrating Its Performance at Both the Fall Dormancy and the Spring Green-Up
It is assumed that the cold resistance of the leaves of perennial turfgrass is crucial when it first encounters autumn/winter cold, while the regrowth ability of stolons is crucial for rapid spring green-up. Briefly, when plants encounter chilling injury, their leaves strive to maintain photosynthesis by prolonging the green period and synthesizing energy to resist chilling injury. Secondly, the leaves transport photosynthate to the stolon to store energy for spring green-up. Leaves with a strong cold resistance are more conducive to the implementation of the above process. The bud from the stolon was the initial site for spring green-up. Therefore, the cold tolerance of perennial turfgrass relies on both the leaves and stolons. This mechanism is completely different from the mechanism of cold resistance in annual plants, which do not experience fall dormancy and spring green-up [42,43,44]. Moreover, the use of an evaluation system for the cold resistance of annual plants is inappropriate for evaluating the cold resistance of perennials [45,46,47,48]. A successful cold-tolerant perennial grass plant needs to be characterized by both delayed fall dormancy and early spring green-up. In this study, through the dynamic investigation of changes in leaf colour in autumn/winter and green coverage in the following year and the membership function analysis and cluster analysis, the growth performance of 55 Stenotaphrum accessions in these two stages was evaluated (Table 1, Table 2 and Table 3; Figure 1). This improved evaluation method compensates for the limitation of the previous cold tolerance evaluation method, which mainly focused on the spring green-up stage and paid less attention to fall dormancy [10,11]. The cold-tolerant accessions selected by this improved method have more ornamental value and are easier for the public to accept. The results showing that the autumn/winter leaf colour and the spring green-up coverage has a weak correlation and that the rank fit between a single period and these two periods is poor indicates that the growth performance of a single period cannot replace the overall evaluation (Figure 2; Table 3). The use of technical methods can only regulate the growth performance of one period (e.g., fall dormancy) and does not affect the growth performance of another period (e.g., spring green-up), supporting the above results [49,50].
4.2. This Improved Evaluation Method Cannot Be Replaced by Laboratory Evaluation
The laboratory-based cold tolerance results and the pot cold tolerance results are inconsistent (Table 3 and Table 6; Figure 1 and Figure 3). There was no correlation between LT50 and the autumn leaf colour or the spring green-up coverage. The total relative regrowth was not correlated with the autumn/winter leaf colour and only correlated with the next year’s green coverage (Figure 4 and Figure 5). This explains why LT50 and stolon regrowth data cannot fully reflect the cold resistance of Stenotaphrum accessions. The inconsistency of the LT50 or the stolon regrowth data to the cold tolerance found in other perennial grass might be also partially attributed to this reason [16,17].
The stolon regrowth rate is positively correlated with the spring green-up coverage (Figure 5), which is in agreement with reports on other turfgrasses [5,51]. These data can to some extent reflect the situation of spring green-up of turfgrass. However, caution should be taken when using this method for cold tolerance evaluation in the future due to the weak correlation.
4.3. Screening of Several Excellent Cold-Tolerant Accessions That Can Be Directly Used in Temperate Regions of China
Through the comprehensive evaluation method, we selected excellent-cold-resistance accessions, which were represented by ST003, S13, and S12 (Table 3). These excellent accessions were obtained from Sydney, Australia, Wenchang, Hainan (China), and Tengchong, Yunnan (China) (Supplementary Table S1). Although several studies have evaluated the cold resistance of Stenotaphrum plants, most have focused on accessions from Europe and North America [19,20,21,22]. This study evaluated the cold resistance of Stenotaphrum plants mainly using Chinese accessions. Due to cold tolerance being an important factor limiting plant geographical distribution [52] and cold tolerance being evaluated in temperate regions in China, the selected excellent-cold-resistance accessions can be directly applied locally. In the future, we plan to further evaluate the shade tolerance of these cold-tolerant accessions and screen for excellent shade-tolerant grass accessions that can be applied in temperate regions.
5. Conclusions
A turfgrass with good cold resistance should have both the advantage of delayed fall dormancy and early spring green-up. Based on the situation that the previous cold tolerance evaluation of turfgrass mainly focused on the spring green-up and paid less attention to its performance in the fall dormancy, this study integrates the performance of these two stages by dynamically investigating the autumn/winter leaf colour and next year’s coverage and uses membership functions and cluster analysis to comprehensively evaluate the cold resistance of 55 Stenotaphrum accessions. This method cannot be simplified by the performance of one period, nor can it be replaced by indicator measurements conducted in the laboratory. The establishment of this method compensates for the shortcomings of previous methods for evaluating the cold tolerance of turfgrass. With the help of this improved method, we have screened several excellent-cold-tolerance accessions (ST003, S13, and S12) for the temperate regions of East China.
J.-Q.Z. and Z.-Y.W. designed the work. J.Q. and D.-L.H. carried out the experiments. D.-L.H., J.-Q.Z. and Z.-Y.W. wrote the paper. J.-Y.Z., J.-B.C., D.-J.S. and J.-X.L. revised the paper. All authors contributed to the article. All authors have read and agreed to the published version of the manuscript.
The original contributions presented in the study are included in the article/
The authors declare no competing interests.
Footnotes
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Figure 2. Correlation between the average greenness during the fall dormancy and average coverage during the spring green-up. The P and R2 are the fitted parameters. The symbol * indicates a correlation.
Figure 4. Correlation between LT50 and other parameters. (A) Correlation between LT50 and average greenness. (B) Correlation between LT50 and average coverage. (C) Correlation between LT50 and total relative regrowth rate. The P and R2 are the fitted parameters. The symbol * indicates a correlation.
Figure 5. Correlation between total relative regrowth rate and other parameters. (A) Correlation between total relative regrowth rate and average greenness. (B) Correlation between total relative regrowth rate and average coverage. The P and R2 are the fitted parameters. The symbol * indicates a correlation.
Leaf greenness during the fall dormancy.
Name | Leaf Greenness | Av. Greenness | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
29 October | 5 November | 12 November | 19 November | 26 November | 5 December | 10 December | 17 December | |||||||||||
ST003 | 7.000 ± 0.577 | b | 7.000 ± 0.577 | a | 6.000 ± 0.289 | a | 5.000 ± 0.000 | a | 4.000 ± 0.289 | a | 3.000 ± 0.000 | a | 3.000 ± 0.000 | a | 2.000 ± 0.577 | a | 4.625 ± 0.289 | a |
S12 | 7.000 ± 0.000 | b | 7.000 ± 0.000 | a | 6.000 ± 0.289 | a | 5.000 ± 0.289 | a | 4.000 ± 0.000 | a | 3.000 ± 0.577 | a | 2.000 ± 0.289 | b | 1.000 ± 0.000 | b | 4.375 ± 0.180 | ab |
674925-1 | 7.000 ± 0.000 | b | 7.000 ± 0.000 | a | 6.000 ± 0.289 | a | 4.000 ± 0.577 | b | 3.000 ± 0.000 | b | 3.000 ± 0.000 | a | 2.000 ± 0.000 | b | 1.000 ± 0.000 | b | 4.125 ± 0.108 | bc |
674925-3 | 7.000 ± 0.000 | b | 7.000 ± 0.000 | a | 6.000 ± 0.289 | a | 4.000 ± 0.000 | b | 3.000 ± 0.000 | b | 3.000 ± 0.000 | a | 2.000 ± 0.289 | b | 1.000 ± 0.000 | b | 4.125 ± 0.072 | bc |
410361 | 8.000 ± 0.577 | a | 7.000 ± 0.577 | a | 6.000 ± 0.289 | a | 4.000 ± 0.000 | b | 3.000 ± 0.000 | b | 2.000 ± 0.000 | b | 1.000 ± 0.000 | c | 1.000 ± 0.000 | b | 4.000 ± 0.180 | cd |
S004 | 7.000 ± 0.000 | b | 6.000 ± 0.000 | b | 5.000 ± 0.000 | b | 4.000 ± 0.289 | b | 3.000 ± 0.000 | b | 3.000 ± 0.000 | a | 2.000 ± 0.289 | b | 1.000 ± 0.000 | b | 3.875 ± 0.072 | cde |
S04 | 7.000 ± 0.577 | b | 6.000 ± 0.000 | b | 5.000 ± 0.000 | b | 4.000 ± 0.000 | b | 3.000 ± 0.000 | b | 3.000 ± 0.000 | a | 2.000 ± 0.000 | b | 1.000 ± 0.000 | b | 3.875 ± 0.072 | cde |
S08 | 6.000 ± 0.000 | b | 6.000 ± 0.000 | b | 6.000 ± 0.000 | a | 4.000 ± 0.577 | b | 3.000 ± 0.289 | b | 3.000 ± 0.289 | a | 2.000 ± 0.289 | b | 1.000 ± 0.000 | b | 3.875 ± 0.180 | cde |
S25 | 6.000 ± 0.000 | b | 6.000 ± 0.000 | b | 6.000 ± 0.000 | a | 4.000 ± 0.577 | b | 3.000 ± 0.289 | b | 3.000 ± 0.289 | a | 2.000 ± 0.289 | b | 1.000 ± 0.000 | b | 3.875 ± 0.180 | cde |
S39 | 7.000 ± 0.000 | b | 6.000 ± 0.000 | b | 5.000 ± 0.000 | b | 4.000 ± 0.000 | b | 3.000 ± 0.289 | b | 3.000 ± 0.289 | a | 2.000 ± 0.000 | b | 1.000 ± 0.000 | b | 3.875 ± 0.072 | cde |
S48 | 7.000 ± 0.000 | b | 6.000 ± 0.000 | b | 6.000 ± 0.000 | a | 4.000 ± 0.577 | b | 3.000 ± 0.289 | b | 2.000 ± 0.000 | b | 2.000 ± 0.000 | b | 1.000 ± 0.000 | b | 3.875 ± 0.108 | cde |
S13 | 7.000 ± 0.000 | b | 6.000 ± 0.000 | b | 5.000 ± 0.000 | b | 4.000 ± 0.000 | b | 3.000 ± 0.000 | b | 2.000 ± 0.000 | b | 2.000 ± 0.000 | b | 1.000 ± 0.000 | b | 3.75 ± 0.000 | de |
S26 | 7.000 ± 0.000 | b | 6.000 ± 0.000 | b | 5.000 ± 0.000 | b | 4.000 ± 0.000 | b | 3.000 ± 0.000 | b | 2.000 ± 0.000 | b | 2.000 ± 0.000 | b | 1.000 ± 0.000 | b | 3.75 ± 0.000 | de |
S31 | 6.000 ± 0.000 | b | 6.000 ± 0.000 | b | 5.000 ± 0.000 | b | 4.000 ± 0.000 | b | 3.000 ± 0.000 | b | 3.000 ± 0.000 | a | 2.000 ± 0.000 | b | 1.000 ± 0.000 | b | 3.75 ± 0.000 | de |
S58 | 7.000 ± 0.577 | b | 6.000 ± 0.289 | b | 5.000 ± 0.000 | b | 4.000 ± 0.000 | b | 2.000 ± 0.000 | c | 2.000 ± 0.000 | b | 2.000 ± 0.000 | b | 1.000 ± 0.000 | b | 3.625 ± 0.108 | ef |
647924-2 | 7.000 ± 0.289 | b | 6.000 ± 0.000 | b | 5.000 ± 0.289 | b | 3.000 ± 0.000 | c | 2.000 ± 0.000 | c | 2.000 ± 0.000 | b | 1.000 ± 0.000 | c | 1.000 ± 0.000 | b | 3.375 ± 0.072 | fg |
S14 | 6.000 ± 0.000 | b | 5.000 ± 0.000 | c | 4.000 ± 0.000 | c | 4.000 ± 0.000 | b | 3.000 ± 0.289 | b | 2.000 ± 0.289 | b | 2.000 ± 0.289 | b | 1.000 ± 0.000 | b | 3.375 ± 0.108 | fg |
S52 | 6.000 ± 0.577 | b | 5.000 ± 0.000 | c | 5.000 ± 0.000 | b | 3.000 ± 0.000 | c | 3.000 ± 0.000 | b | 2.000 ± 0.000 | b | 2.000 ± 0.000 | b | 1.000 ± 0.000 | b | 3.375 ± 0.072 | fg |
S007 | 6.000 ± 0.000 | b | 5.000 ± 0.000 | c | 4.000 ± 0.000 | c | 3.000 ± 0.000 | c | 3.000 ± 0.000 | b | 2.000 ± 0.000 | b | 2.000 ± 0.000 | b | 1.000 ± 0.000 | b | 3.25 ± 0.000 | gh |
S10 | 6.000 ± 0.289 | b | 5.000 ± 0.000 | c | 4.000 ± 0.577 | c | 3.000 ± 0.577 | c | 3.000 ± 0.000 | b | 2.000 ± 0.000 | b | 2.000 ± 0.000 | b | 1.000 ± 0.000 | b | 3.25 ± 0.180 | gh |
291594 | 7.000 ± 0.000 | b | 5.000 ± 0.577 | c | 4.000 ± 0.000 | c | 3.000 ± 0.000 | c | 2.000 ± 0.000 | c | 2.000 ± 0.000 | b | 1.000 ± 0.000 | c | 1.000 ± 0.000 | b | 3.125 ± 0.072 | ghi |
300129 | 7.000 ± 0.000 | b | 5.000 ± 0.000 | c | 4.000 ± 0.000 | c | 3.000 ± 0.000 | c | 2.000 ± 0.000 | c | 2.000 ± 0.000 | b | 1.000 ± 0.000 | c | 1.000 ± 0.000 | b | 3.125 ± 0.000 | ghi |
300130 | 7.000 ± 0.000 | b | 5.000 ± 0.577 | c | 4.000 ± 0.289 | c | 3.000 ± 0.289 | c | 2.000 ± 0.289 | c | 2.000 ± 0.289 | b | 1.000 ± 0.000 | c | 1.000 ± 0.000 | b | 3.125 ± 0.253 | ghi |
S22 | 6.000 ± 0.000 | b | 6.000 ± 0.000 | b | 4.000 ± 0.000 | c | 3.000 ± 0.000 | c | 2.000 ± 0.000 | c | 2.000 ± 0.000 | b | 1.000 ± 0.000 | c | 1.000 ± 0.000 | b | 3.125 ± 0.000 | ghi |
S37 | 5.000 ± 0.577 | c | 4.000 ± 0.000 | d | 4.000 ± 0.000 | c | 3.000 ± 0.000 | c | 3.000 ± 0.000 | b | 2.000 ± 0.000 | b | 2.000 ± 0.000 | b | 1.000 ± 0.000 | b | 3.125 ± 0.072 | ghi |
410364 | 6.000 ± 0.000 | b | 5.000 ± 0.000 | c | 4.000 ± 0.000 | c | 3.000 ± 0.000 | c | 2.000 ± 0.000 | c | 2.000 ± 0.000 | b | 1.000 ± 0.000 | c | 1.000 ± 0.000 | b | 3.000 ± 0.000 | hij |
674924-2 | 6.000 ± 0.289 | b | 5.000 ± 0.289 | c | 4.000 ± 0.000 | c | 3.000 ± 0.289 | c | 2.000 ± 0.289 | c | 2.000 ± 0.000 | b | 1.000 ± 0.000 | c | 1.000 ± 0.000 | b | 3.000 ± 0.182 | hij |
S11 | 6.000 ± 0.000 | b | 4.000 ± 0.289 | d | 4.000 ± 0.289 | c | 3.000 ± 0.289 | c | 2.000 ± 0.000 | c | 2.000 ± 0.000 | b | 2.000 ± 0.000 | b | 1.000 ± 0.000 | b | 3.000 ± 0.108 | hij |
S23 | 6.000 ± 0.000 | b | 5.000 ± 0.000 | c | 4.000 ± 0.000 | c | 3.000 ± 0.000 | c | 2.000 ± 0.000 | c | 2.000 ± 0.000 | b | 1.000 ± 0.000 | c | 1.000 ± 0.000 | b | 3.000 ± 0.000 | hij |
S53 | 6.000 ± 0.000 | b | 4.000 ± 0.000 | d | 4.000 ± 0.000 | c | 3.000 ± 0.000 | c | 2.000 ± 0.000 | c | 2.000 ± 0.000 | b | 2.000 ± 0.000 | b | 1.000 ± 0.000 | b | 3.000 ± 0.000 | hij |
509038 | 6.000 ± 0.000 | b | 5.000 ± 0.000 | c | 3.000 ± 0.000 | d | 3.000 ± 0.000 | c | 2.000 ± 0.000 | c | 2.000 ± 0.000 | b | 1.000 ± 0.000 | c | 1.000 ± 0.000 | b | 2.875 ± 0.000 | ijk |
S006 | 5.000 ± 0.577 | c | 4.000 ± 0.000 | d | 4.000 ± 0.000 | c | 3.000 ± 0.289 | c | 2.000 ± 0.289 | c | 2.000 ± 0.289 | b | 2.000 ± 0.289 | b | 1.000 ± 0.000 | b | 2.875 ± 0.218 | ijk |
S46 | 5.000 ± 0.000 | c | 4.000 ± 0.000 | d | 4.000 ± 0.000 | c | 3.000 ± 0.000 | c | 2.000 ± 0.000 | c | 2.000 ± 0.000 | b | 2.000 ± 0.000 | b | 1.000 ± 0.000 | b | 2.875 ± 0.000 | ijk |
S54 | 6.000 ± 0.577 | b | 4.000 ± 0.000 | d | 4.000 ± 0.000 | c | 3.000 ± 0.000 | c | 2.000 ± 0.000 | c | 2.000 ± 0.000 | b | 1.000 ± 0.000 | c | 1.000 ± 0.000 | b | 2.875 ± 0.072 | ijk |
410363 | 5.000 ± 0.000 | c | 5.000 ± 0.000 | c | 3.000 ± 0.000 | d | 3.000 ± 0.000 | c | 2.000 ± 0.000 | c | 2.000 ± 0.000 | b | 1.000 ± 0.000 | c | 1.000 ± 0.000 | b | 2.750 ± 0.000 | jkl |
S21 | 5.000 ± 0.000 | c | 4.000 ± 0.000 | d | 4.000 ± 0.000 | c | 3.000 ± 0.000 | c | 2.000 ± 0.000 | c | 2.000 ± 0.000 | b | 1.000 ± 0.000 | c | 1.000 ± 0.000 | b | 2.750 ± 0.000 | jkl |
S29 | 5.000 ± 0.000 | c | 5.000 ± 0.000 | c | 3.000 ± 0.289 | d | 3.000 ± 0.289 | c | 2.000 ± 0.000 | c | 2.000 ± 0.000 | b | 1.000 ± 0.000 | c | 1.000 ± 0.000 | b | 2.750 ± 0.072 | jkl |
S38 | 5.000 ± 0.000 | c | 5.000 ± 0.000 | c | 3.000 ± 0.000 | d | 2.000 ± 0.000 | d | 2.000 ± 0.000 | c | 2.000 ± 0.000 | b | 2.000 ± 0.000 | b | 1.000 ± 0.000 | b | 2.750 ± 0.000 | jkl |
S44 | 4.000 ± 0.000 | d | 4.000 ± 0.000 | d | 3.000 ± 0.000 | d | 3.000 ± 0.000 | c | 2.000 ± 0.000 | b | 2.000 ± 0.000 | b | 2.000 ± 0.000 | b | 1.000 ± 0.000 | b | 2.750 ± 0.000 | jkl |
S62 | 5.000 ± 0.577 | c | 4.000 ± 0.289 | d | 4.000 ± 0.289 | c | 3.000 ± 0.289 | c | 2.000 ± 0.000 | c | 2.000 ± 0.000 | b | 1.000 ± 0.000 | c | 1.000 ± 0.000 | b | 2.750 ± 0.180 | jkl |
S30 | 5.000 ± 0.000 | c | 4.000 ± 0.000 | d | 3.000 ± 0.000 | d | 3.000 ± 0.000 | c | 2.000 ± 0.000 | c | 2.000 ± 0.000 | b | 1.000 ± 0.000 | c | 1.000 ± 0.000 | b | 2.625 ± 0.000 | klm |
S47 | 6.000 ± 0.000 | b | 5.000 ± 0.577 | c | 4.000 ± 0.000 | c | 2.000 ± 0.000 | d | 1.000 ± 0.000 | d | 1.000 ± 0.000 | c | 1.000 ± 0.000 | c | 1.000 ± 0.000 | b | 2.625 ± 0.072 | klm |
S49 | 5.000 ± 0.577 | c | 4.000 ± 0.000 | d | 4.000 ± 0.000 | c | 3.000 ± 0.000 | c | 2.000 ± 0.000 | c | 1.000 ± 0.000 | c | 1.000 ± 0.000 | c | 1.000 ± 0.000 | b | 2.625 ± 0.072 | klm |
S55 | 4.000 ± 0.000 | d | 4.000 ± 0.000 | d | 3.000 ± 0.000 | d | 3.000 ± 0.000 | c | 2.000 ± 0.000 | c | 2.000 ± 0.000 | b | 1.000 ± 0.000 | c | 1.000 ± 0.000 | b | 2.5 ± 0.000 | lmn |
S005 | 6.000 ± 0.000 | b | 4.000 ± 0.000 | d | 3.000 ± 0.000 | d | 2.000 ± 0.000 | d | 1.000 ± 0.000 | d | 1.000 ± 0.000 | c | 1.000 ± 0.000 | c | 1.000 ± 0.000 | b | 2.375 ± 0.000 | mn |
S50 | 4.000 ± 0.000 | d | 4.000 ± 0.000 | d | 3.000 ± 0.577 | d | 3.000 ± 0.000 | c | 2.000 ± 0.000 | c | 1.000 ± 0.000 | c | 1.000 ± 0.000 | c | 1.000 ± 0.000 | b | 2.375 ± 0.072 | mn |
G001 | 4.000 ± 0.000 | d | 4.000 ± 0.000 | d | 3.000 ± 0.000 | d | 2.000 ± 0.000 | d | 2.000 ± 0.000 | c | 2.000 ± 0.000 | b | 1.000 ± 0.000 | c | 1.000 ± 0.000 | b | 2.375 ± 0.000 | mn |
S45 | 4.000 ± 0.000 | d | 3.000 ± 0.577 | e | 2.000 ± 0.000 | e | 2.000 ± 0.000 | d | 2.000 ± 0.000 | c | 2.000 ± 0.000 | b | 2.000 ± 0.000 | b | 1.000 ± 0.000 | b | 2.250 ± 0.072 | n |
S51 | 5.000 ± 0.577 | c | 4.000 ± 0.000 | d | 3.000 ± 0.000 | d | 2.000 ± 0.000 | d | 1.000 ± 0.000 | d | 1.000 ± 0.000 | c | 1.000 ± 0.000 | c | 1.000 ± 0.000 | b | 2.250 ± 0.072 | n |
S57 | 4.000 ± 0.577 | d | 3.000 ± 0.289 | e | 3.000 ± 0.289 | d | 2.000 ± 0.000 | d | 2.000 ± 0.000 | c | 2.000 ± 0.000 | b | 1.000 ± 0.000 | c | 1.000 ± 0.000 | b | 2.250 ± 0.144 | n |
S56 | 4.000 ± 0.289 | d | 3.000 ± 0.000 | e | 3.000 ± 0.000 | d | 2.000 ± 0.000 | d | 1.000 ± 0.000 | d | 1.000 ± 0.000 | c | 1.000 ± 0.000 | c | 1.000 ± 0.000 | b | 2.000 ± 0.036 | n |
S02 | 3.000 ± 0.577 | e | 2.000 ± 0.000 | f | 2.000 ± 0.000 | e | 1.000 ± 0.000 | e | 1.000 ± 0.000 | d | 1.000 ± 0.000 | c | 1.000 ± 0.000 | c | 1.000 ± 0.000 | b | 1.500 ± 0.072 | o |
S01 | 2.000 ± 0.000 | f | 2.000 ± 0.000 | f | 2.000 ± 0.000 | e | 1.000 ± 0.000 | e | 1.000 ± 0.000 | d | 1.000 ± 0.000 | c | 1.000 ± 0.000 | c | 1.000 ± 0.000 | b | 1.375 ± 0.000 | o |
S27 | 3.000 ± 0.000 | e | 2.000 ± 0.000 | f | 1.000 ± 0.000 | f | 1.000 ± 0.000 | e | 1.000 ± 0.000 | d | 1.000 ± 0.000 | c | 1.000 ± 0.000 | c | 1.000 ± 0.000 | b | 1.375 ± 0.000 | o |
S28 | 3.000 ± 0.000 | e | 2.000 ± 0.000 | f | 1.000 ± 0.000 | f | 1.000 ± 0.000 | e | 1.000 ± 0.000 | d | 1.000 ± 0.000 | c | 1.000 ± 0.000 | c | 1.000 ± 0.000 | b | 1.375 ± 0.000 | o |
Note: the word “Average” was abbreviated as Av. The significant differences among accessions in a same column is indicated by different letters.
Coverage survey at the spring green-up.
Name | Cover (%) | Av. Cover (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
28 April | 7 May | 27 May | 6 June | |||||||
291594 | 60.000 ± 0.000 | a | 80.000 ± 0.012 | a | 98.000 ± 0.015 | abc | 100.000 ± 0.000 | a | 84.500 ± 0.007 | a |
S62 | 60.000 ± 0.010 | a | 70.000 ± 0.000 | b | 100.000 ± 0.000 | a | 100.000 ± 0.000 | a | 82.500 ± 0.003 | ab |
S13 | 60.000 ± 0.006 | a | 65.000 ± 0.020 | c | 98.000 ± 0.010 | abc | 100.000 ± 0.000 | a | 80.750 ± 0.009 | bc |
S58 | 60.000 ± 0.000 | a | 58.000 ± 0.020 | e | 100.000 ± 0.000 | a | 100.000 ± 0.000 | a | 79.500 ± 0.002 | cd |
S57 | 55.000 ± 0.020 | b | 63.000 ± 0.010 | cd | 93.000 ± 0.017 | def | 100.000 ± 0.000 | a | 77.750 ± 0.011 | de |
S08 | 50.000 ± 0.000 | c | 55.000 ± 0.029 | e | 99.000 ± 0.000 | ab | 100.000 ± 0.000 | a | 76.000 ± 0.007 | ef |
S006 | 50.000 ± 0.029 | c | 53.000 ± 0.015 | ef | 92.000 ± 0.017 | defg | 100.000 ± 0.000 | a | 73.750 ± 0.015 | fg |
S39 | 35.000 ± 0.000 | f | 60.000 ± 0.015 | d | 100.000 ± 0.000 | a | 100.000 ± 0.000 | a | 73.750 ± 0.004 | fg |
S47 | 40.000 ± 0.020 | e | 55.000 ± 0.012 | e | 100.000 ± 0.000 | a | 100.000 ± 0.000 | a | 73.750 ± 0.008 | fg |
S007 | 45.000 ± 0.000 | d | 54.000 ± 0.01 | ef | 90.000 ± 0.000 | fg | 100.000 ± 0.000 | a | 72.250 ± 0.003 | gh |
S25 | 35.000 ± 0.000 | f | 55.000 ± 0.000 | e | 93.000 ± 0.015 | def | 100.000 ± 0.000 | a | 70.750 ± 0.004 | hi |
S30 | 35.000 ± 0.029 | f | 55.000 ± 0.029 | e | 90.000 ± 0.000 | fg | 100.000 ± 0.000 | a | 70.000 ± 0.014 | hi |
S005 | 35.000 ± 0.000 | f | 50.000 ± 0.000 | fg | 94.000 ± 0.029 | cdef | 100.000 ± 0.000 | a | 69.750 ± 0.007 | i |
647924-2 | 30.000 ± 0.000 | g | 55.000 ± 0.000 | e | 90.000 ± 0.000 | fg | 100.000 ± 0.000 | a | 68.750 ± 0.000 | i |
S22 | 35.000 ± 0.000 | f | 50.000 ± 0.000 | fg | 90.000 ± 0.000 | fg | 100.000 ± 0.000 | a | 68.750 ± 0.000 | i |
S48 | 35.000 ± 0.000 | f | 50.000 ± 0.000 | fg | 90.000 ± 0.000 | fg | 100.000 ± 0.000 | a | 68.750 ± 0.000 | i |
674925-1 | 25.000 ± 0.029 | h | 60.000 ± 0.000 | d | 88.000 ± 0.029 | gh | 100.000 ± 0.000 | a | 68.250 ± 0.014 | ij |
S51 | 25.000 ± 0.000 | h | 52.000 ± 0.015 | ef | 96.000 ± 0.015 | abcd | 100.000 ± 0.000 | a | 68.250 ± 0.008 | ij |
S29 | 32.000 ± 0.015 | fg | 50.000 ± 0.000 | fg | 90.000 ± 0.000 | fg | 100.000 ± 0.000 | a | 68.000 ± 0.004 | ijk |
S52 | 30.000 ± 0.000 | g | 43.000 ± 0.015 | hi | 98.000 ± 0.012 | abc | 100.000 ± 0.000 | a | 67.750 ± 0.007 | ijk |
S54 | 30.000 ± 0.000 | g | 50.000 ± 0.000 | fg | 90.000 ± 0.000 | fg | 100.000 ± 0.000 | a | 67.500 ± 0.000 | ijk |
S37 | 30.000 ± 0.000 | g | 55.000 ± 0.029 | e | 88.000 ± 0.015 | efg | 96.000 ± 0.020 | b | 67.250 ± 0.022 | ijk |
S26 | 30.000 ± 0.000 | g | 45.000 ± 0.029 | h | 90.000 ± 0.000 | fg | 100.000 ± 0.000 | a | 66.250 ± 0.007 | jkl |
S23 | 20.000 ± 0.000 | j | 50.000 ± 0.000 | fg | 94.000 ± 0.015 | cdef | 100.000 ± 0.000 | a | 66.000 ± 0.004 | jkl |
S56 | 40.000 ± 0.000 | e | 47.000 ± 0.018 | gh | 85.000 ± 0.000 | h | 90.000 ± 0.000 | c | 65.500 ± 0.004 | kl |
S31 | 20.000 ± 0.000 | j | 45.000 ± 0.000 | h | 96.000 ± 0.015 | abcd | 100.000 ± 0.000 | a | 65.250 ± 0.004 | kl |
S50 | 25.000 ± 0.000 | h | 40.000 ± 0.000 | ij | 96.000 ± 0.020 | abcd | 100.000 ± 0.000 | a | 65.250 ± 0.005 | lm |
674924-2 | 15.000 ± 0.000 | k | 45.000 ± 0.029 | h | 100.000 ± 0.000 | a | 100.000 ± 0.000 | a | 65.000 ± 0.007 | lm |
S14 | 20.000 ± 0.000 | j | 60.000 ± 0.000 | d | 80.000 ± 0.000 | i | 100.000 ± 0.000 | a | 65.000 ± 0.000 | lmn |
S38 | 20.000 ± 0.000 | j | 40.000 ± 0.000 | ij | 100.000 ± 0.000 | a | 100.000 ± 0.000 | a | 65.000 ± 0.000 | lmn |
ST003 | 25.000 ± 0.029 | h | 35.000 ± 0.029 | k | 100.000 ± 0.000 | a | 100.000 ± 0.000 | a | 65.000 ± 0.014 | lmn |
S12 | 40.000 ± 0.000 | e | 38.000 ± 0.015 | jk | 80.000 ± 0.000 | i | 100.000 ± 0.000 | a | 64.500 ± 0.004 | lmn |
S04 | 10.000 ± 0.000 | lm | 45.000 ± 0.029 | h | 96.000 ± 0.010 | abcd | 100.000 ± 0.000 | a | 62.750 ± 0.009 | mno |
S55 | 20.000 ± 0.000 | j | 37.000 ± 0.015 | jk | 94.000 ± 0.006 | cdef | 100.000 ± 0.000 | a | 62.750 ± 0.005 | no |
S49 | 15.000 ± 0.000 | k | 40.000 ± 0.000 | ij | 90.000 ± 0.000 | fg | 100.000 ± 0.000 | a | 61.250 ± 0.000 | op |
G001 | 15.000 ± 0.000 | k | 35.000 ± 0.000 | k | 95.000 ± 0.000 | bcde | 100.000 ± 0.000 | a | 61.250 ± 0.000 | op |
S53 | 2.000 ± 0.010 | op | 38.000 ± 0.012 | jk | 99.000 ± 0.006 | ab | 100.000 ± 0.000 | a | 59.750 ± 0.007 | p |
S46 | 10.000 ± 0 | lm | 20.000 ± 0.000 | n | 96.000 ± 0.010 | abcd | 100.000 ± 0.000 | a | 56.500 ± 0.003 | q |
410363 | 8.000 ± 0.015 | mn | 25.000 ± 0.000 | m | 80.000 ± 0.000 | i | 100.000 ± 0.000 | a | 53.250 ± 0.004 | r |
300130 | 0.000 ± 0.000 | p | 35.000 ± 0.000 | k | 75.000 ± 0.000 | j | 100.000 ± 0.000 | a | 52.500 ± 0.000 | r |
509038 | 12 ± 0.015 | kl | 18.000 ± 0.015 | no | 80.000 ± 0.000 | i | 100.000 ± 0.000 | a | 52.500 ± 0.008 | r |
410364 | 1.000 ± 0.000 | p | 30.000 ± 0.000 | l | 70.000 ± 0.000 | k | 100.000 ± 0.000 | a | 50.250 ± 0.000 | s |
674925-3 | 5.000 ± 0.000 | no | 20.000 ± 0.000 | n | 70.000 ± 0.000 | k | 100.000 ± 0.000 | a | 48.750 ± 0.000 | s |
S21 | 15.000 ± 0.029 | k | 30.000 ± 0.029 | l | 60.000 ± 0.000 | l | 85.000 ± 0.000 | d | 47.500 ± 0.014 | s |
410361 | 10.000 ± 0.000 | lm | 30.000 ± 0.000 | l | 55.000 ± 0.029 | m | 80.000 ± 0.000 | e | 43.750 ± 0.007 | t |
S004 | 2.000 ± 0.010 | op | 10.000 ± 0.000 | p | 70.000 ± 0.000 | k | 90.000 ± 0.000 | c | 43.000 ± 0.003 | t |
S45 | 10.000 ± 0.000 | lm | 25.000 ± 0.029 | m | 55.000 ± 0.029 | m | 65.000 ± 0.029 | f | 38.750 ± 0.022 | u |
S11 | 5.000 ± 0.000 | no | 5.000 ± 0.000 | q | 45.000 ± 0.000 | n | 60.000 ± 0.000 | g | 28.750 ± 0.000 | v |
S44 | 5.000 ± 0.000 | no | 7.000 ± 0.006 | pq | 30.000 ± 0.000 | o | 40.000 ± 0.000 | h | 20.500 ± 0.001 | w |
300129 | 7.000 ± 0.017 | mn | 15.000 ± 0.000 | o | 20.000 ± 0.000 | p | 35.000 ± 0.000 | i | 19.250 ± 0.004 | w |
S01 | 2.000 ± 0.000 | op | 8.000 ± 0.015 | pq | 25.000 ± 0.000 | o | 40.000 ± 0.000 | h | 18.750 ± 0.004 | w |
S27 | 2.000 ± 0.010 | op | 8.000 ± 0.010 | pq | 30.000 ± 0.000 | o | 35.000 ± 0.000 | i | 18.750 ± 0.005 | w |
S02 | 2.000 ± 0.000 | op | 6.000 ± 0.006 | pq | 15.000 ± 0.000 | q | 30.000 ± 0.000 | j | 13.250 ± 0.001 | x |
S10 | 0.000 ± 0.000 | p | 5.000 ± 0.000 | q | 15.000 ± 0.000 | q | 25.000 ± 0.000 | k | 11.250 ± 0.000 | y |
S28 | 1.000 ± 0.000 | p | 5.000 ± 0.000 | q | 10.000 ± 0.000 | r | 20.000 ± 0.000 | l | 9.000 ± 0.000 | y |
Note: the word “Average” was abbreviated as Av. The significant differences among accessions in a same column is indicated by different letters.
Membership function analysis based on pot experiment results. Note: the word “Average” was abbreviated as Av. The significant differences among accessions in a same column is indicated by different letters.
Accession | Av. Greenness | Av. Coverage | Score | Rank | |||
---|---|---|---|---|---|---|---|
ST003 | 1.000 ± 0.000 | a | 0.741 ± 0.012 | m | 0.871 ± 0.006 | a | 1 |
S13 | 0.742 ± 0.066 | cd | 0.950 ± 0.004 | c | 0.846 ± 0.032 | ab | 2 |
S12 | 0.927 ± 0.027 | ab | 0.735 ± 0.001 | m | 0.831 ± 0.014 | abc | 3 |
S08 | 0.771 ± 0.013 | cd | 0.887 ± 0.002 | e | 0.829 ± 0.005 | abcd | 4 |
674925-1 | 0.853 ± 0.043 | bc | 0.784 ± 0.012 | ijk | 0.819 ± 0.015 | abcd | 5 |
S39 | 0.777 ± 0.047 | cd | 0.857 ± 0.002 | f | 0.817 ± 0.025 | abcd | 6 |
S58 | 0.697 ± 0.028 | de | 0.925 ± 0.006 | d | 0.811 ± 0.017 | bcd | 7 |
S25 | 0.771 ± 0.013 | cd | 0.817 ± 0.002 | gh | 0.794 ± 0.007 | bcde | 8 |
S48 | 0.775 ± 0.036 | cd | 0.791 ± 0.006 | ijk | 0.783 ± 0.021 | cde | 9 |
291594 | 0.543 ± 0.026 | fgh | 1.000 ± 0.000 | a | 0.771 ± 0.013 | de | 10 |
S26 | 0.742 ± 0.066 | cd | 0.758 ± 0.003 | lm | 0.750 ± 0.031 | ef | 11 |
S04 | 0.777 ± 0.047 | cd | 0.711 ± 0.006 | n | 0.744 ± 0.021 | ef | 12 |
S31 | 0.742 ± 0.066 | cd | 0.745 ± 0.001 | m | 0.743 ± 0.034 | ef | 13 |
S007 | 0.586 ± 0.052 | efg | 0.837 ± 0.004 | fg | 0.712 ± 0.028 | fg | 14 |
647924-2 | 0.621 ± 0.033 | ef | 0.791 ± 0.006 | ijk | 0.706 ± 0.021 | fgh | 15 |
S52 | 0.621 ± 0.033 | ef | 0.778 ± 0.001 | kl | 0.699 ± 0.015 | fgh | 16 |
S62 | 0.419 ± 0.018 | hijkl | 0.973 ± 0.005 | b | 0.696 ± 0.006 | fgh | 17 |
674925-3 | 0.855 ± 0.054 | bc | 0.526 ± 0.004 | rs | 0.691 ± 0.029 | fghi | 18 |
S14 | 0.619 ± 0.021 | ef | 0.741 ± 0.006 | m | 0.681 ± 0.014 | ghij | 19 |
S22 | 0.547 ± 0.049 | fgh | 0.791 ± 0.006 | ijk | 0.669 ± 0.028 | ghijk | 20 |
S37 | 0.543 ± 0.026 | fgh | 0.782 ± 0.022 | jk | 0.662 ± 0.002 | ghijkl | 21 |
S006 | 0.443 ± 0.029 | hijk | 0.857 ± 0.012 | f | 0.651 ± 0.021 | hijklm | 22 |
410361 | 0.810 ± 0.016 | cd | 0.460 ± 0.005 | t | 0.635 ± 0.005 | ijklmn | 23 |
S23 | 0.508 ± 0.045 | fghij | 0.754 ± 0.001 | lm | 0.631 ± 0.023 | jklmn | 24 |
S47 | 0.394 ± 0.057 | ijklm | 0.857 ± 0.002 | f | 0.626 ± 0.027 | jklmn | 25 |
S54 | 0.464 ± 0.019 | ghijk | 0.774 ± 0.006 | kl | 0.619 ± 0.013 | klmn | 26 |
S004 | 0.777 ± 0.047 | cd | 0.450 ± 0.001 | t | 0.613 ± 0.024 | klmno | 27 |
674924-2 | 0.484 ± 0.015 | ghij | 0.741 ± 0.003 | m | 0.613 ± 0.008 | klmno | 28 |
S29 | 0.425 ± 0.015 | hijkl | 0.781 ± 0.001 | jk | 0.603 ± 0.008 | lmnop | 29 |
S30 | 0.390 ± 0.035 | jklmn | 0.807 ± 0.012 | hi | 0.599 ± 0.011 | mnop | 30 |
S53 | 0.508 ± 0.045 | fghij | 0.672 ± 0.002 | o | 0.590 ± 0.021 | mnopq | 31 |
S57 | 0.265 ± 0.021 | op | 0.910 ± 0.007 | d | 0.587 ± 0.014 | nopq | 32 |
S38 | 0.429 ± 0.038 | hijkl | 0.741 ± 0.006 | m | 0.585 ± 0.022 | nopqr | 33 |
S005 | 0.312 ± 0.028 | lmno | 0.804 ± 0.002 | hij | 0.558 ± 0.012 | opqrs | 34 |
S46 | 0.468 ± 0.042 | ghijk | 0.629 ± 0.002 | p | 0.549 ± 0.022 | pqrs | 35 |
300130 | 0.519 ± 0.033 | fghi | 0.576 ± 0.005 | q | 0.548 ± 0.014 | pqrs | 36 |
S49 | 0.386 ± 0.012 | jklmn | 0.692 ± 0.006 | no | 0.539 ± 0.009 | qrs | 37 |
S55 | 0.351 ± 0.031 | klmno | 0.711 ± 0.001 | n | 0.531 ± 0.015 | qrs | 38 |
410364 | 0.508 ± 0.045 | fghij | 0.546 ± 0.004 | r | 0.527 ± 0.025 | rst | 39 |
S51 | 0.269 ± 0.001 | no | 0.784 ± 0.003 | ijk | 0.527 ± 0.001 | rst | 40 |
S50 | 0.308 ± 0.005 | lmno | 0.745 ± 0.002 | m | 0.526 ± 0.003 | rst | 41 |
509038 | 0.468 ± 0.042 | ghijk | 0.576 ± 0.005 | q | 0.522 ± 0.018 | st | 42 |
410363 | 0.429 ± 0.038 | hijkl | 0.586 ± 0.001 | q | 0.508 ± 0.019 | st | 43 |
G001 | 0.312 ± 0.028 | lmno | 0.692 ± 0.006 | no | 0.502 ± 0.017 | st | 44 |
S56 | 0.193 ± 0.006 | p | 0.748 ± 0.001 | m | 0.471 ± 0.003 | t | 45 |
S21 | 0.429 ± 0.038 | hijkl | 0.509 ± 0.014 | s | 0.469 ± 0.012 | t | 46 |
S11 | 0.502 ± 0.011 | fghij | 0.261 ± 0.002 | v | 0.381 ± 0.006 | u | 47 |
300129 | 0.547 ± 0.049 | fgh | 0.135 ± 0.004 | w | 0.341 ± 0.022 | uv | 48 |
S45 | 0.277 ± 0.047 | mno | 0.393 ± 0.025 | u | 0.335 ± 0.011 | uv | 49 |
S10 | 0.576 ± 0.004 | gf | 0.029 ± 0.001 | y | 0.302 ± 0.002 | v | 50 |
S44 | 0.429 ± 0.038 | hijkl | 0.152 ± 0.001 | w | 0.291 ± 0.019 | v | 51 |
S01 | 0.000 ± 0.000 | q | 0.129 ± 0.003 | wx | 0.064 ± 0.001 | w | 52 |
S27 | 0.000 ± 0.000 | q | 0.129 ± 0.005 | x | 0.064 ± 0.002 | w | 53 |
S02 | 0.035 ± 0.019 | q | 0.056 ± 0.001 | x | 0.045 ± 0.011 | wx | 54 |
S28 | 0.000 ± 0.000 | q | 0.000 ± 0.000 | z | 0.000 ± 0.000 | x | 55 |
Leaf LT50.
Name | Fitted Equation | R2 | LT50 |
---|---|---|---|
S39 | Y = 0.0001214257/(0.726933e(0.9834X) + 0.000167) | 0.9962 | −9.322 |
S005 | Y = 0.00009260336/(0.99510695e(1.062X) + 0.00009305) | 0.9936 | −8.744 |
410364 | Y = 0.000057860928/(0.99514186e(1.128X) + 0.00005814) | 0.9938 | −8.651 |
674925-1 | Y = 0.00012980552/(0.9599648e(1.041X) + 0.0001352) | 0.9953 | −8.598 |
S22 | Y = 0.009776992/(0.87537e(0.5697X) + 0.01103) | 0.9388 | −8.130 |
S25 | Y = 0.0060481639/(0.856899e(0.6375X) + 0.007001) | 0.9382 | −8.039 |
S30 | Y = 0.000074015504/(0.98732504e(1.254X) + 0.00007496) | 0.9932 | −7.584 |
S14 | Y = 0.00101304/(1.003992e(0.9263X) + 0.001008) | 0.9303 | −7.442 |
S13 | Y = 0.001925836/(1.010097e(0.8403X) + 0.001903) | 0.9207 | −7.431 |
S55 | Y = 0.00072324/(1.0072825e(0.9924X) + 0.0007175) | 0.9509 | −7.286 |
509038 | Y = 0.0319708/(0.9969e(0.518X) + 0.0311) | 0.9763 | −6.588 |
S47 | Y = 0.244601/(0.9515e(0.2011X) + 0.2105) | 0.951 | −6.105 |
s46 | Y = 0.034527/(0.98615e(0.5549X)+0.03385) | 0.9939 | −6.005 |
410363 | Y = 0.0050289084/(0.886966e(1.136X) + 0.005634) | 0.9972 | −4.666 |
S57 | Y = 0.004862/(0.995138e(1.165X) + 0.004862) | 0.9906 | −4.567 |
300130 | Y = 0.002255/(0.997745e(1.455X) + 0.002255) | 0.996 | −4.187 |
G001 | Y = 0.05019384/(0.93299e(0.7484X) + 0.05101) | 0.9973 | −3.926 |
S51 | Y = 0.11036856/(0.841e(0.5361X) + 0.1154) | 0.9734 | −3.875 |
S58 | Y = 0.2392359/(0.8063e(0.3166X) + 0.2307) | 0.9029 | −3.726 |
ST003 | Y = 0.14605676/(0.8111e(−0.4706X) + 0.1517) | 0.9755 | −3.726 |
674925-3 | Y = 0.251808/(0.788e(0.306X) + 0.244) | 0.9965 | −3.628 |
647924-2 | Y = 0.2639386/(0.7887e(−0.2983X) + 0.2533) | 0.9962 | −3.537 |
S04 | Y = 0.01177386/(0.9775e(1.343X) + 0.0119) | 0.9986 | −3.298 |
S02 | Y = 0.02462/(0.97538e(1.119X) + 0.02462) | 0.999 | −3.287 |
S26 | Y = 0.29094953/(0.6728e(0.2717X) + 0.2993) | 0.945 | −3.192 |
S29 | Y = 0.081644706/(0.87528e(0.778X) + 0.08502) | 0.9446 | −3.103 |
S31 | Y = 0.00738243/(0.982543e(1.627X) + 0.007457) | 0.9968 | −3.012 |
410361 | Y = 0.019615484/(0.97498e(1.302X) + 0.01972) | 0.9963 | −3.004 |
S44 | Y = 0.0661362/(0.8303e(0.8921X) + 0.0732) | 0.9909 | −2.962 |
S48 | Y = 0.038806316/(0.94997e(1.092X) + 0.03923) | 0.9937 | −2.938 |
S49 | Y = 0.016183542/(0.96979e(−1.436X)+0.01641) | 0.975 | −2.860 |
S01 | Y = 0.06156948/(0.92834e(0.9526X) + 0.06216) | 0.9834 | −2.858 |
674924-2 | Y = 0.12187968/(0.8518e(0.6895X) + 0.1248) | 0.9736 | −2.855 |
S23 | Y = 0.049398912/(0.93632e(1.055X) + 0.05008) | 0.9893 | −2.801 |
S52 | Y = 0.4486097/(0.8117e(0.1628X) + 0.3773) | 0.9669 | −2.736 |
S08 | Y = 0.16656668/(0.8332e(0.6524X) + 0.1666) | 0.9569 | −2.467 |
S004 | Y = 0.1205039/(0.8749e(0.8163X) + 0.121) | 0.9124 | −2.433 |
S53 | Y = 0.054600213/(0.94213e(1.266X) + 0.05477) | 0.9529 | −2.252 |
291594 | Y = 0.37764/(0.689e(0.2548X) + 0.36) | 0.977 | −2.181 |
S007 | Y = 0.033322732/(0.96213e(1.551X) + 0.03347) | 0.9852 | −2.171 |
S38 | Y = 0.23126787/(0.7486e(0.5685X) + 0.2351) | 0.9767 | −2.095 |
S12 | Y = 0.18992891/(0.809e(0.736X) + 0.1901) | 0.9566 | −1.971 |
S54 | Y = 0.27675508/(0.5583e(0.4981X) + 0.3164) | 0.9954 | −1.719 |
S45 | Y = 0.3547992/(0.6842e(0.3752X) + 0.3448) | 0.9328 | −1.676 |
300129 | Y = 0.335682/(0.6909e(0.4776X) + 0.3291) | 0.9623 | −1.471 |
S62 | Y = 0.393151/(0.6483e(0.3226X) + 0.3817) | 0.9171 | −1.461 |
S37 | Y = 0.4515098/(0.6016e(0.2602X) + 0.4354) | 0.9082 | −0.968 |
S50 | Y = 0.4506476/(0.5882e(0.2879X) + 0.4388) | 0.9715 | −0.835 |
S56 | Y = 0.4829058/(0.5944e(0.275X) + 0.4586) | 0.8743 | −0.576 |
S28 | Y = 0.50284/(0.5565e(−0.2231X) + 0.4835) | 0.9411 | −0.285 |
S10 | Y = 0.5437773/(0.5721e(0.2231X) + 0.5049) | 0.8281 | 0.081 |
S21 | Y = 0.5490298/(0.5151e(0.2924X) + 0.5269) | 0.9247 | 0.353 |
S11 | Y = 0.5569336/(0.5256e(0.2513X) + 0.5284) | 0.9165 | 0.429 |
S006 | Y = 0.6057768/(0.4544e(0.207X) + 0.5836) | 0.9358 | 1.562 |
S27 | Y = 0.7050042/(0.4224e(0.1686X) + 0.6546) | 0.8635 | 3.447 |
Stolon regrowth ability post-low-temperature treatment.
Name | Regrowth Ratio (%) | Relative Regrowth Rate (%) | Total Relative Regrowth Rate (%) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
8 °C | 3 °C | −2 °C | −7 °C | −12 °C | 3 °C | 2 °C | −7 °C | ||||||||||
S30 | 46.000 ± 0.033 | abc | 36.000 ± 0.033 | bc | 26.000 ± 0.033 | ab | 10.000 ± 0.000 | a | 0.000 ± 0.000 | 78.000 ± 0.032 | cd | 57.000 ± 0.054 | abc | 22.000 ± 0.021 | a | 52.000 ± 0.058 | a |
S39 | 50.000 ± 0.057 | ab | 40.000 ± 0.100 | ab | 26.000 ± 0.066 | ab | 10.000 ± 0.100 | a | 0.000 ± 0.000 | 80.000 ± 0.036 | bc | 52.000 ± 0.045 | bcdef | 20.000 ± 0.036 | ab | 51.000 ± 0.014 | ab |
S25 | 40.000 ± 0.100 | cd | 36.000 ± 0.033 | bc | 20.000 ± 0.000 | abcd | 3.000 ± 0.033 | ab | 0.000 ± 0.000 | 90.000 ± 0.052 | a | 50.000 ± 0.078 | cdefg | 8.000 ± 0.069 | abc | 49.000 ± 0.064 | bc |
S55 | 40.000 ± 0.000 | cd | 36.000 ± 0.066 | bc | 23.000 ± 0.033 | abc | 0.000 ± 0.000 | b | 0.000 ± 0.000 | 90.000 ± 0.032 | a | 58.000 ± 0.021 | ab | 0.000 ± 0.031 | c | 49.000 ± 0.036 | bc |
S13 | 53.000 ± 0.033 | a | 46.000 ± 0.033 | a | 26.000 ± 0.088 | ab | 3.000 ± 0.033 | ab | 0.000 ± 0.000 | 87.000 ± 0.058 | ab | 49.000 ± 0.065 | defg | 6.000 ± 0.066 | bc | 47.000 ± 0.067 | c |
410364 | 46.000 ± 0.088 | abc | 36.000 ± 0.033 | bc | 26.000 ± 0.066 | ab | 3.000 ± 0.033 | ab | 0.000 ± 0.000 | 78.000 ± 0.088 | cd | 57.000 ± 0.021 | abc | 7.000 ± 0.025 | abc | 47.000 ± 0.065 | c |
S14 | 50.000 ± 0.057 | ab | 40.000 ± 0.056 | ab | 30.000 ± 0.057 | a | 0.000 ± 0.000 | b | 0.000 ± 0.000 | 80.000 ± 0.065 | bc | 60.000 ± 0.054 | a | 0.000 ± 0.000 | c | 47.000 ± 0.069 | c |
S31 | 30.000 ± 0.033 | ef | 26.000 ± 0.033 | def | 16.000 ± 0.033 | abcde | 0.000 ± 0.000 | b | 0.000 ± 0.000 | 87.000 ± 0.037 | ab | 53.000 ± 0.088 | abcde | 0.000 ± 0.000 | c | 47.000 ± 0.056 | c |
S22 | 50.000 ± 0.057 | ab | 40.000 ± 0.056 | ab | 20.000 ± 0.032 | abcd | 6.000 ± 0.033 | ab | 0.000 ± 0.000 | 80.000 ± 0.041 | bc | 40.000 ± 0.056 | hijk | 12.000 ± 0.032 | abc | 44.000 ± 0.044 | d |
674925-1 | 46.000 ± 0.066 | abc | 30.000 ± 0.098 | cde | 20.000 ± 0.057 | abcd | 10.000 ± 0.100 | a | 0.000 ± 0.000 | 65.000 ± 0.012 | ghi | 43.000 ± 0.032 | ghij | 22.000 ± 0.021 | a | 43.000 ± 0.021 | d |
291594 | 30.000 ± 0.000 | ef | 26.000 ± 0.088 | def | 13.000 ± 0.033 | abcde | 0.000 ± 0.000 | b | 0.000 ± 0.000 | 87.000 ± 0.037 | ab | 43.000 ± 0.036 | ghij | 0.000 ± 0.000 | c | 43.000 ± 0.032 | d |
S58 | 30.000 ± 0.057 | ef | 23.000 ± 0.033 | efg | 16.000 ± 0.033 | abcde | 0.000 ± 0.000 | b | 0.000 ± 0.000 | 77.000 ± 0.077 | cde | 53.000 ± 0.088 | abcde | 0.000 ± 0.000 | c | 43.000 ± 0.032 | d |
ST003 | 40.000 ± 0.100 | cd | 36.000 ± 0.033 | bc | 16.000 ± 0.033 | abcde | 0.000 ± 0.000 | b | 0.000 ± 0.000 | 90.000 ± 0.032 | a | 40.000 ± 0.022 | hijk | 0.000 ± 0.000 | c | 43.000 ± 0.024 | d |
674925-3 | 36.000 ± 0.066 | de | 26.000 ± 0.033 | def | 20.000 ± 0.057 | abcd | 0.000 ± 0.000 | b | 0.000 ± 0.000 | 72.000 ± 0.032 | def | 56.000 ± 0.032 | abcd | 0.000 ± 0.000 | c | 43.000 ± 0.024 | d |
S006 | 30.000 ± 0.000 | ef | 20.000 ± 0.023 | fh | 16.000 ± 0.033 | abcde | 0.000 ± 0.000 | b | 0.000 ± 0.000 | 67.000 ± 0.054 | fghi | 53.000 ± 0.088 | abcde | 0.000 ± 0.000 | c | 40.000 ± 0.054 | e |
410363 | 43.000 ± 0.066 | bcd | 30.000 ± 0.100 | cde | 20.000 ± 0.057 | abcd | 0.000 ± 0.000 | b | 0.000 ± 0.000 | 70.000 ± 0.035 | efgh | 47.000 ± 0.023 | efgh | 0.000 ± 0.000 | c | 39.000 ± 0.054 | ef |
S56 | 26.000 ± 0.033 | fg | 20.000 ± 0.100 | fh | 10.000 ± 0.057 | bcde | 0.000 ± 0.000 | b | 0.000 ± 0.000 | 77.000 ± 0.078 | cd | 38.000 ± 0.041 | ijkl | 0.000 ± 0.000 | c | 38.000 ± 0.045 | efg |
S005 | 50.000 ± 0.100 | ab | 33.000 ± 0.033 | bcd | 23.000 ± 0.033 | abc | 0.000 ± 0.000 | b | 0.000 ± 0.000 | 66.000 ± 0.065 | fghi | 46.000 ± 0.054 | fgh | 0.000 ± 0.000 | c | 37.000 ± 0.023 | fg |
S47 | 50.000 ± 0.100 | ab | 36.000 ± 0.133 | bc | 20.000 ± 0.100 | abcd | 0.000 ± 0.000 | b | 0.000 ± 0.000 | 72.000 ± 0.033 | defg | 40.000 ± 0.022 | hijk | 0.000 ± 0.000 | c | 37.000 ± 0.065 | fg |
G001 | 30.000 ± 0.320 | ef | 23.000 ± 0.088 | efg | 10.000 ± 0.057 | bcde | 0.000 ± 0.000 | b | 0.000 ± 0.000 | 77.000 ± 0.057 | cde | 33.000 ± 0.014 | klm | 0.000 ± 0.000 | c | 37.000 ± 0.047 | fg |
S50 | 36.000 ± 0.066 | de | 26.000 ± 0.033 | def | 13.000 ± 0.066 | abcde | 0.000 ± 0.000 | b | 0.000 ± 0.000 | 72.000 ± 0.023 | def | 36.000 ± 0.036 | kl | 0.000 ± 0.000 | c | 36.000 ± 0.054 | g |
S51 | 36.000 ± 0.066 | de | 26.000 ± 0.033 | def | 13.000 ± 0.066 | abcde | 0.000 ± 0.000 | b | 0.000 ± 0.000 | 72.000 ± 0.054 | def | 36.000 ± 0.054 | kl | 0.000 ± 0.000 | c | 36.000 ± 0.054 | g |
S54 | 30.000 ± 0.054 | ef | 26.000 ± 0.033 | def | 6.666 ± 0.033 | cde | 0.000 ± 0.000 | b | 0.000 ± 0.000 | 87.000 ± 0.036 | ab | 20.000 ± 0.059 | n | 0.000 ± 0.000 | c | 36.000 ± 0.064 | g |
S02 | 36.000 ± 0.133 | de | 26.000 ± 0.066 | def | 10.000 ± 0.057 | bcde | 0.000 ± 0.000 | b | 0.000 ± 0.000 | 72.000 ± 0.023 | def | 28.000 ± 0.023 | m | 0.000 ± 0.000 | c | 33.000 ± 0.033 | h |
S08 | 36.000 ± 0.033 | de | 30.000 ± 0.098 | cde | 6.000 ± 0.066 | cde | 0.000 ± 0.000 | b | 0.000 ± 0.000 | 83.000 ± 0.054 | abc | 17.000 ± 0.032 | n | 0.000 ± 0.000 | c | 33.000 ± 0.057 | h |
S23 | 36.000 ± 0.066 | de | 26.000 ± 0.066 | def | 10.000 ± 0.057 | bcde | 0.000 ± 0.000 | b | 0.000 ± 0.000 | 72.000 ± 0.023 | def | 28.000 ± 0.036 | m | 0.000 ± 0.000 | c | 33.000 ± 0.036 | h |
S37 | 20.000 ± 0.021 | g | 10.000 ± 0.021 | h | 10.000 ± 0.100 | bcde | 0.000 ± 0.000 | b | 0.000 ± 0.000 | 50.000 ± 0.054 | m | 50.000 ± 0.078 | cdefg | 0.000 ± 0.000 | c | 33.000 ± 0.035 | h |
S44 | 36.000 ± 0.033 | de | 20.000 ± 0.100 | fh | 16.000 ± 0.033 | abcde | 0.000 ± 0.000 | b | 0.000 ± 0.000 | 56.000 ± 0.036 | klm | 44.000 ± 0.064 | ghi | 0.000 ± 0.000 | c | 33.000 ± 0.025 | h |
S48 | 30.000 ± 0.057 | ef | 20.000 ± 0.000 | fh | 10.000 ± 0.054 | bcde | 0.000 ± 0.000 | b | 0.000 ± 0.000 | 67.000 ± 0.023 | fghi | 33.000 ± 0.014 | klm | 0.000 ± 0.000 | c | 33.000 ± 0.014 | h |
300130 | 43.000 ± 0.033 | bcd | 26.000 ± 0.066 | def | 16.000 ± 0.088 | abcd | 0.000 ± 0.000 | b | 0.000 ± 0.000 | 60.000 ± 0.036 | ijk | 37.000 ± 0.056 | jkl | 0.000 ± 0.000 | c | 33.000 ± 0.025 | h |
410361 | 36.000 ± 0.033 | de | 20.000 ± 0.057 | fh | 13.000 ± 0.033 | abcde | 0.000 ± 0.000 | b | 0.000 ± 0.000 | 56.000 ± 0.021 | klm | 36.000 ± 0.032 | kl | 0.000 ± 0.000 | c | 31.000 ± 0.023 | hi |
S29 | 36.000 ± 0.033 | de | 20.000 ± 0.100 | fh | 13.000 ± 0.033 | abcde | 0.000 ± 0.000 | b | 0.000 ± 0.000 | 56.000 ± 0.025 | klm | 36.000 ± 0.025 | kl | 0.000 ± 0.000 | c | 31.000 ± 0.065 | hi |
S49 | 36.000 ± 0.133 | de | 20.000 ± 0.023 | fh | 13.000 ± 0.033 | abcde | 0.000 ± 0.000 | b | 0.000 ± 0.000 | 56.000 ± 0.025 | klm | 36.000 ± 0.021 | kl | 0.000 ± 0.000 | c | 31.000 ± 0.021 | hi |
509038 | 46.000 ± 0.033 | abc | 26.000 ± 0.033 | def | 16.000 ± 0.033 | abcde | 0.000 ± 0.000 | b | 0.000 ± 0.000 | 57.000 ± 0.065 | klm | 35.000 ± 0.057 | kl | 0.000 ± 0.000 | c | 30.000 ± 0.035 | hij |
S46 | 46.000 ± 0.066 | abc | 26.000 ± 0.088 | def | 16.000 ± 0.088 | abcde | 0.000 ± 0.000 | b | 0.000 ± 0.000 | 57.000 ± 0.041 | klm | 35.000 ± 0.36 | kl | 0.000 ± 0.000 | c | 30.000 ± 0.025 | hij |
S57 | 40.000 ± 0.100 | cd | 23.000 ± 0.033 | efg | 13.000 ± 0.033 | abcde | 0.000 ± 0.000 | b | 0.000 ± 0.000 | 58.000 ± 0.023 | jkl | 33.000 ± 0.014 | lm | 0.000 ± 0.000 | c | 30.000 ± 0.054 | hij |
674924-2 | 36.000 ± 0.033 | de | 26.000 ± 0.133 | def | 6.000 ± 0.066 | cde | 0.000 ± 0.000 | b | 0.000 ± 0.000 | 72.000 ± 0.045 | def | 17.000 ± 0.025 | n | 0.000 ± 0.000 | c | 30.000 ± 0.036 | hij |
S004 | 30.000 ± 0.000 | ef | 16.000 ± 0.033 | g | 10.000 ± 0.057 | bcde | 0.000 ± 0.000 | b | 0.000 ± 0.000 | 53.000 ± 0.069 | lm | 33.000 ± 0.045 | klm | 0.000 ± 0.000 | c | 29.000 ± 0.031 | ij |
S01 | 30.000 ± 0.000 | ef | 16.000 ± 0.033 | g | 10.000 ± 0.057 | bcde | 0.000 ± 0.000 | b | 0.000 ± 0.000 | 53.000 ± 0.047 | lm | 33.000 ± 0.025 | klm | 0.000 ± 0.000 | c | 29.000 ± 0.025 | ij |
S21 | 30.000 ± 0.000 | ef | 20.000 ± 0.013 | fh | 6.000 ± 0.033 | cde | 0.000 ± 0.000 | b | 0.000 ± 0.000 | 67.000 ± 0.014 | fghi | 20.000 ± 0.056 | n | 0.000 ± 0.000 | c | 29.000 ± 0.021 | ij |
S26 | 30.000 ± 0.000 | ef | 16.000 ± 0.033 | g | 10.000 ± 0.000 | bcde | 0.000 ± 0.000 | b | 0.000 ± 0.000 | 53.000 ± 0.021 | lm | 33.000 ± 0.014 | klm | 0.000 ± 0.000 | c | 29.000 ± 0.021 | ij |
S38 | 30.000 ± 0.100 | ef | 20.000 ± 0.023 | fh | 6.000± 0.033 | cde | 0.000 ± 0.000 | b | 0.000 ± 0.000 | 67.000 ± 0.023 | fghi | 20.000 ± 0.056 | n | 0.000 ± 0.000 | c | 29.000 ± 0.023 | ij |
S52 | 30.000 ± 0.100 | ef | 16.000 ± 0.033 | g | 10.000 ± 0.023 | bcde | 0.000 ± 0.000 | b | 0.000 ± 0.000 | 53.000 ± 0.056 | lm | 33.000 ± 0.014 | klm | 0.000 ± 0.000 | c | 29.000 ± 0.025 | ij |
647924-2 | 36.000 ± 0.033 | de | 16.000 ± 0.033 | g | 13.000 ± 0.033 | abcde | 0.000 ± 0.000 | b | 0.000 ± 0.000 | 44.000 ± 0.025 | m | 36.000 ± 0.054 | kl | 0.000 ± 0.000 | c | 27.000 ± 0.014 | j |
S53 | 40.000 ± 0.052 | cd | 16.000 ± 0.033 | g | 16.000 ± 0.066 | abcde | 0.000 ± 0.000 | b | 0.000 ± 0.000 | 40.000 ± 0.036 | mn | 40.000 ± 0.036 | hijk | 0.000 ± 0.000 | c | 27.000 ± 0.036 | j |
S62 | 20.000 ± 0.021 | g | 16.000 ± 0.033 | g | 0.000 ± 0.000 | e | 0.000 ± 0.000 | b | 0.000 ± 0.000 | 80.000 ± 0.054 | bc | 0.000 ± 0.000 | p | 0.000 ± 0.000 | c | 27.000 ± 0.054 | j |
S007 | 36.000 ± 0.033 | de | 16.000 ± 0.033 | g | 10.000 ± 0.100 | bcde | 0.000 ± 0.000 | b | 0.000 ± 0.000 | 44.000 ± 0.023 | m | 28.000 ± 0.025 | m | 0.000 ± 0.000 | c | 24.000 ± 0.021 | k |
S12 | 36.000 ± 0.133 | de | 23.000 ± 0.066 | efg | 3.000 ± 0.033 | de | 0.000 ± 0.000 | b | 0.000 ± 0.000 | 64.000 ± 0.036 | hij | 8.000 ± 0.036 | o | 0.000 ± 0.000 | c | 24.000 ± 0.036 | k |
S28 | 30.000 ± 0.054 | ef | 20.000 ± 0.045 | fh | 0.000 ± 0.000 | e | 0.000 ± 0.000 | b | 0.000 ± 0.000 | 67.000 ± 0.025 | fghi | 0.000 ± 0.000 | p | 0.000 ± 0.000 | c | 22.000 ± 0.000 | k |
S45 | 30.000 ± 0.100 | ef | 20.000 ± 0.100 | fh | 0.000 ± 0.000 | e | 0.000 ± 0.000 | b | 0.000 ± 0.000 | 67.000 ± 0.056 | fghi | 0.000 ± 0.000 | p | 0.000 ± 0.000 | c | 22.000 ± 0.056 | k |
S04 | 40.000 ± 0.052 | cd | 20.000 ± 0.000 | fh | 6.000 ± 0.033 | cde | 0.000 ± 0.000 | b | 0.000 ± 0.000 | 50.000 ± 0.054 | m | 15.000 ± 0.025 | n | 0.000 ± 0.000 | c | 22.000 ± 0.021 | k |
S11 | 26.000 ± 0.066 | fg | 16.000 ± 0.033 | g | 0.000 ± 0.000 | e | 0.000 ± 0.000 | b | 0.000 ± 0.000 | 62.000 ± 0.023 | ijk | 0.000 ± 0.000 | p | 0.000 ± 0.000 | c | 21.000 ± 0.023 | k |
S27 | 26.000 ± 0.066 | fg | 16.000 ± 0.033 | g | 0.000 ± 0.000 | e | 0.000 ± 0.000 | b | 0.000 ± 0.000 | 62.000 ± 0.056 | ijk | 0.000 ± 0.000 | p | 0.000 ± 0.000 | c | 21.000 ± 0.056 | k |
S10 | 26.000 ± 0.066 | fg | 13.000 ± 0.033 | gh | 0.000 ± 0.000 | e | 0.000 ± 0.000 | b | 0.000 ± 0.000 | 50.000 ± 0.054 | m | 0.000 ± 0.000 | p | 0.000 ± 0.000 | c | 17.000 ± 0.054 | l |
300129 | 26.000 ± 0.120 | fg | 10.000 ± 0.000 | h | 0.000 ± 0.000 | e | 0.000 ± 0.000 | b | 0.000 ± 0.000 | 38.000 ± 0.000 | n | 0.000 ± 0.000 | p | 0.000 ± 0.000 | c | 13.000 ± 0.000 | m |
Note: The significant differences among accessions in a same column is indicated by different letters.
Membership function analysis based on laboratory results. The significant differences among accessions in a same column is indicated by different letters.
Accession | LT50 | Total Relative Regrowth Rate | Score | Rank | ||
---|---|---|---|---|---|---|
S39 | 1.000 ± 0.000 | 0.974 ± 0.014 | ab | 0.987 ± 0.007 | a | 1 |
S30 | 0.863 ± 0.000 | 1.000 ± 0.000 | a | 0.931 ± 0.000 | b | 2 |
S25 | 0.899 ± 0.000 | 0.923 ± 0.001 | bc | 0.911 ± 0.001 | bc | 3 |
410364 | 0.947 ± 0.000 | 0.871 ± 0.026 | c | 0.909 ± 0.013 | bc | 4 |
S55 | 0.841 ± 0.000 | 0.922 ± 0.026 | bc | 0.881 ± 0.013 | cd | 5 |
S14 | 0.852 ± 0.000 | 0.872 ± 0.023 | c | 0.862 ± 0.011 | d | 6 |
S13 | 0.852 ± 0.000 | 0.872 ± 0.012 | c | 0.862 ± 0.006 | d | 7 |
674925-1 | 0.943 ± 0.000 | 0.768 ± 0.031 | d | 0.856 ± 0.015 | d | 8 |
S22 | 0.906 ± 0.000 | 0.795 ± 0.022 | d | 0.851 ± 0.011 | d | 9 |
S005 | 0.954 ± 0.000 | 0.616 ± 0.023 | fg | 0.785 ± 0.011 | e | 10 |
S31 | 0.505 ± 0.000 | 0.871 ± 0.031 | c | 0.688 ± 0.015 | f | 11 |
S47 | 0.748 ± 0.000 | 0.615 ± 0.005 | fg | 0.681 ± 0.002 | fg | 12 |
S58 | 0.561 ± 0.000 | 0.771 ± 0.062 | d | 0.666 ± 0.031 | fg | 13 |
ST003 | 0.561 ± 0.000 | 0.769 ± 0.003 | d | 0.665 ± 0.001 | fg | 14 |
674925-3 | 0.554 ± 0.000 | 0.769 ± 0.023 | d | 0.661 ± 0.011 | fg | 15 |
410363 | 0.635 ± 0.000 | 0.667 ± 0.024 | ef | 0.651 ± 0.012 | g | 16 |
509038 | 0.785 ± 0.000 | 0.436 ± 0.019 | ijk | 0.611 ± 0.009 | h | 17 |
291594 | 0.441 ± 0.000 | 0.768 ± 0.041 | d | 0.604 ± 0.021 | h | 18 |
G001 | 0.577 ± 0.000 | 0.615 ± 0.021 | fg | 0.596 ± 0.011 | h | 19 |
S46 | 0.740 ± 0.000 | 0.435 ± 0.008 | ijk | 0.587 ± 0.004 | h | 20 |
S51 | 0.573 ± 0.000 | 0.591 ± 0.023 | g | 0.581 ± 0.011 | hi | 21 |
300130 | 0.597 ± 0.000 | 0.512 ± 0.012 | h | 0.555 ± 0.006 | ij | 22 |
S57 | 0.627 ± 0.000 | 0.436 ± 0.018 | ijk | 0.531 ± 0.009 | jk | 23 |
S02 | 0.527 ± 0.000 | 0.512 ± 0.012 | h | 0.521 ± 0.006 | jkl | 24 |
S44 | 0.501 ± 0.000 | 0.513 ± 0.021 | hi | 0.507 ± 0.011 | klm | 25 |
S48 | 0.501 ± 0.000 | 0.512 ± 0.007 | hi | 0.506 ± 0.003 | klm | 26 |
S23 | 0.489 ± 0.000 | 0.513 ± 0.022 | hi | 0.501 ± 0.011 | klmn | 27 |
S54 | 0.404 ± 0.000 | 0.590 ± 0.021 | g | 0.497 ± 0.011 | klmn | 28 |
S49 | 0.493 ± 0.000 | 0.486 ± 0.007 | hij | 0.491 ± 0.003 | lmno | 29 |
S08 | 0.463 ± 0.000 | 0.512 ± 0.007 | hi | 0.487 ± 0.003 | lmno | 30 |
S29 | 0.512 ± 0.000 | 0.462 ± 0.021 | hijk | 0.487 ± 0.011 | lmno | 31 |
410361 | 0.505 ± 0.000 | 0.461 ± 0.007 | hijk | 0.483 ± 0.003 | mnopq | 32 |
S26 | 0.519 ± 0.000 | 0.436 ± 0.018 | ijk | 0.478 ± 0.009 | mnopq | 33 |
S56 | 0.315 ± 0.000 | 0.641 ± 0.005 | efg | 0.478 ± 0.002 | mnopq | 34 |
674924-2 | 0.493 ± 0.000 | 0.435 ± 0.012 | ijk | 0.464 ± 0.006 | nopqr | 35 |
S50 | 0.335 ± 0.000 | 0.589 ± 0.006 | g | 0.462 ± 0.003 | nopqr | 36 |
647924-2 | 0.546 ± 0.000 | 0.359 ± 0.017 | l | 0.453 ± 0.008 | opqrs | 37 |
S01 | 0.493 ± 0.000 | 0.410 ± 0.021 | jkl | 0.452 ± 0.011 | pqrs | 38 |
S52 | 0.484 ± 0.000 | 0.411 ± 0.018 | kl | 0.447 ± 0.009 | qrs | 39 |
S004 | 0.461 ± 0.000 | 0.410 ± 0.018 | kl | 0.435 ± 0.009 | rst | 40 |
S38 | 0.434 ± 0.000 | 0.435 ± 0.012 | ijk | 0.434 ± 0.006 | rst | 41 |
S37 | 0.345 ± 0.000 | 0.513 ± 0.021 | hi | 0.429 ± 0.011 | rst | 42 |
S006 | 0.147 ± 0.000 | 0.693 ± 0.071 | e | 0.420 ± 0.035 | st | 43 |
S53 | 0.446 ± 0.000 | 0.358 ± 0.013 | l | 0.402 ± 0.006 | tu | 44 |
S04 | 0.528 ± 0.000 | 0.231 ± 0.003 | m | 0.379 ± 0.001 | uv | 45 |
S62 | 0.384 ± 0.000 | 0.358 ± 0.009 | l | 0.371 ± 0.004 | uv | 46 |
S007 | 0.439 ± 0.000 | 0.283 ± 0.033 | m | 0.361 ± 0.016 | v | 47 |
S12 | 0.424 ± 0.000 | 0.281 ± 0.013 | m | 0.353 ± 0.006 | vw | 48 |
S21 | 0.242 ± 0.000 | 0.410 ± 0.012 | kl | 0.326 ± 0.006 | w | 49 |
S45 | 0.401 ± 0.000 | 0.231 ± 0.011 | m | 0.315 ± 0.005 | w | 50 |
S28 | 0.292 ± 0.000 | 0.231 ± 0.017 | m | 0.261 ± 0.008 | x | 51 |
S11 | 0.236 ± 0.000 | 0.205 ± 0.003 | m | 0.221 ± 0.001 | xy | 52 |
300129 | 0.385 ± 0.000 | 0.000 ± 0.000 | o | 0.192 ± 0.000 | y | 53 |
S10 | 0.263 ± 0.000 | 0.102 ± 0.001 | n | 0.183 ± 0.001 | y | 54 |
S27 | 0.000 ± 0.000 | 0.346 ± 0.182 | m | 0.173 ± 0.091 | y | 55 |
Supplementary Materials
The following supporting information can be downloaded at:
References
1. Rhaetia, R.A.; Revathy, K.; Priya, M.M.; Shankar, S.R. Nutritive and proximate analysis on five weedy grasses for their potential use as fodder. AgroLife Sci.; 2020; 9, pp. 26-34. Available online: http://agrolifejournal.usamv.ro/index.php/agrolife/article/view/258 (accessed on 18 June 2024).
2. Cai, X.; Trenholm, L.E.; Kruse, J.; Sartain, J.B. Response of ‘Captiva’St. Augustinegrass to Shade and Potassium. HortScience; 2011; 46, pp. 1400-1403. [DOI: https://dx.doi.org/10.21273/HORTSCI.46.10.1400]
3. Wherley, B.; Chandra, A.; Genovesi, A.; Kearns, M.; Pepper, T.; Thomas, J. Developmental Response of St. Augustinegrass Cultivars and Experimental Lines in Moderate and Heavy Shade. HortScience; 2013; 48, pp. 1047-1051. [DOI: https://dx.doi.org/10.21273/HORTSCI.48.8.1047]
4. Li, R.; Qu, R.; Bruneau, A.H.; Livingston, D.P. Selection for Freezing Tolerance in St. Augustinegrass through Somaclonal Variation and Germplasm Evaluation. Plant Breed.; 2010; 129, pp. 417-421. [DOI: https://dx.doi.org/10.1111/j.1439-0523.2009.01743.x]
5. Kimball, J.A.; Tuong, T.D.; Arellano, C.; Iii, D.P.L.; Milla-Lewis, S.R. Assessing Freeze-Tolerance in St. Augustinegrass: Temperature Response and Evaluation Methods. Euphytica; 2017; 213, 110. [DOI: https://dx.doi.org/10.1007/s10681-017-1899-z]
6. Moseley, D.O.; Trappe, J.M.; Milla-Lewis, S.R.; Chandra, A.; Kenworthy, K.E.; Liu, W.; Patton, A.J. Characterizing the Growth and Winter Survival of Commercially Available and Experimental Genotypes of St. Augustinegrass. Crop Sci.; 2021; 61, pp. 3097-3109. [DOI: https://dx.doi.org/10.1002/csc2.20445]
7. Li, Z.; Li, X.; He, F. Non-Structural Carbohydrates Contributed to Cold Tolerance and Regeneration of Medicago sativa L. Planta; 2023; 257, 116. [DOI: https://dx.doi.org/10.1007/s00425-023-04154-8] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/37171508]
8. Rimi, F.; Macolino, S.; Richardson, M.D.; Karcher, D.E.; Leinauer, B. Influence of Three Nitrogen Fertilization Schedules on Bermudagrass and Seashore Paspalum: I. Spring Green-up and Fall Color Retention. Crop Sci.; 2013; 53, pp. 1161-1167. [DOI: https://dx.doi.org/10.2135/cropsci2012.09.0562]
9. Schiavon, M.; Leinauer, B.; Sevastionova, E.; Serena, M.; Maier, B. Warm-season Turfgrass Quality, Spring Green-up, and Fall Color Retention under Drip Irrigation. Appl. Turfgrass Sci.; 2011; 8, pp. 1-9. [DOI: https://dx.doi.org/10.1094/ATS-2011-0422-01-RS]
10. Dunne, J.C.; Tuong, T.D.; Livingston, D.P.; Reynolds, W.C.; Milla-Lewis, S.R. Field and Laboratory Evaluation of Bermudagrass Germplasm for Cold Hardiness and Freezing Tolerance. Crop Sci.; 2019; 59, pp. 392-399. [DOI: https://dx.doi.org/10.2135/cropsci2017.11.0667]
11. Hinton, J.D.; Livingston, D.P.; Miller, G.L.; Peacock, C.H.; Tuong, T. Freeze Tolerance of Nine Zoysiagrass Cultivars Using Natural Cold Acclimation and Freeze Chambers. HortScience; 2012; 47, pp. 112-115. [DOI: https://dx.doi.org/10.21273/HORTSCI.47.1.112]
12. Gopinath, L.; Moss, J.Q.; Wu, Y. Quantifying Freeze Tolerance of Hybrid Bermudagrasses Adapted for Golf Course Putting Greens. HortScience; 2021; 56, pp. 478-480. [DOI: https://dx.doi.org/10.21273/HORTSCI15606-20]
13. Ebdon, J.S.; Gagne, R.A.; Manley, R.C. Comparative Cold Tolerance in Diverse Turf Quality Genotypes of Perennial Ryegrass. HortScience; 2002; 37, pp. 826-830. [DOI: https://dx.doi.org/10.21273/HORTSCI.37.5.826]
14. Maier, F.P.; Lang, N.S.; Fry, J.D. Evaluation of an Electrolyte Leakage Technique to Predict St. Augustinegrass Freezing Tolerance. HortScience; 1994; 29, pp. 316-318. [DOI: https://dx.doi.org/10.21273/HORTSCI.29.4.316]
15. Fry, J.; Lang, N.S.; Clifton, R.G.P.; Maier, F.P. Freezing Tolerance and Carbohydrate Content of Low-temperature-acclimated and Nonacclimated Centipedegrass. Crop Sci.; 1993; 33, pp. 1051-1055. [DOI: https://dx.doi.org/10.2135/cropsci1993.0011183X003300050035x]
16. Cardona, C.A.; Duncan, R.R.; Lindstrom, O. Low Temperature Tolerance Assessment in Paspalum. Crop Sci.; 1997; 37, pp. 1283-1291. [DOI: https://dx.doi.org/10.2135/cropsci1997.0011183X003700040043x]
17. Milla-Lewis, S.R.; Kimball, J.A.; Claure, T.E.; Tuong, T.D.; Arellano, C.; Livingston, D.P., III. Freezing Tolerance and the Histology of Recovering Nodes in St. Augustinegrass. Intl. Turfgrass Soc. J.; 2013; 12, pp. 523-530.
18. Maier, F.P.; Lang, N.S.; Fry, J.D. Freezing Tolerance of Three St. Augustinegrass Cultivars as Affected by Stolon Carbohydrate and Water Content. J. Am. Soc. Hortic. Sci.; 1994; 119, pp. 473-476. [DOI: https://dx.doi.org/10.21273/JASHS.119.3.473]
19. Kimball, J.A.; Tuong, T.D.; Arellano, C.; Livingston, D.P.; Milla-Lewis, S.R. Linkage Analysis and Identification of Quantitative Trait Loci Associated with Freeze Tolerance and Turf Quality Traits in St. Augustinegrass. Mol. Breed.; 2018; 38, 67. [DOI: https://dx.doi.org/10.1007/s11032-018-0817-y]
20. Kimball, J.A.; Isleib, T.G.; Reynolds, W.C.; Zuleta, M.C.; Milla-Lewis, S.R. Combining Ability for Winter Survival and Turf Quality Traits in St. Augustinegrass. HortScience; 2016; 51, pp. 810-815. [DOI: https://dx.doi.org/10.21273/HORTSCI.51.7.810]
21. Webster, D.E.; Ebdon, J.S. Effects of Nitrogen and Potassium Fertilization on Perennial Ryegrass Cold Tolerance during Deacclimation in Late Winter and Early Spring. HortScience; 2005; 40, pp. 842-849. [DOI: https://dx.doi.org/10.21273/HORTSCI.40.3.842]
22. Fry, J.D.; Lang, N.S.; Clifton, R.G.P. Freezing Resistance and Carbohydrate Composition of ‘Floratam’ St. Augustinegrass. HortScience; 1991; 26, pp. 1537-1539. [DOI: https://dx.doi.org/10.21273/HORTSCI.26.12.1537]
23. Luo, Y.; Zhang, X.; Xu, J.; Zheng, Y.; Pu, S.; Duan, Z.; Li, Z.; Liu, G.; Chen, J.; Wang, Z. Phenotypic and Molecular Marker Analysis Uncovers the Genetic Diversity of the Grass Stenotaphrum Secundatum. BMC Genet.; 2020; 21, 86. [DOI: https://dx.doi.org/10.1186/s12863-020-00892-w] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32787786]
24. Song, Y.-B.; Yu, F.-H.; Li, J.-M.; Keser, L.H.; Fischer, M.; Dong, M.; Van Kleunen, M. Plant Invasiveness Is Not Linked to the Capacity of Regeneration from Small Fragments: An Experimental Test with 39 Stoloniferous Species. Biol. Invasions; 2013; 15, pp. 1367-1376. [DOI: https://dx.doi.org/10.1007/s10530-012-0374-y]
25. Li, Q.; Nothnagel, E.A. Absence of Variable Fluorescence from Guard Cell Chloroplasts of Stenotaphrum Secundatum. Plant Physiol.; 1988; 86, pp. 429-434. [DOI: https://dx.doi.org/10.1104/pp.86.2.429] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16665925]
26. Liu, T.; Chen, D.; Liu, Z.; Wang, Z.Y.; Hu, J.S. First Report of Pyricularia Leaf Spot on St. Augustine Grass (Stenotaphrum secundatum) in China. Plant Dis.; 2018; 102, 1666. [DOI: https://dx.doi.org/10.1094/PDIS-11-17-1837-PDN]
27. Mei, S.S.; Wang, Z.Y.; Zhang, J.; Rong, W. First Report of Leaf Blight on Stenotaphrum Secundatum Caused by Nigrospora Osmanthi in China. Plant Dis.; 2019; 103, 1783. [DOI: https://dx.doi.org/10.1094/PDIS-02-19-0270-PDN]
28. Zong, J.; Li, L.; Yao, X.; Chen, J.; Wang, H.; Zhao, X.; Liu, J. Performance of Five Typical Warm-season Turfgrasses and Their Influence on Soil Bacterial Community under a Simulated Tropical Coral Island Environment. Land Degrad. Dev.; 2021; 32, pp. 3920-3929. [DOI: https://dx.doi.org/10.1002/ldr.4012]
29. Wu, Y.; Liao, L.; Wang, Z.; He, L. The Complete Plastid Genome of Stenotaphrum Subulatum Trin. (Panicoideae) and Phylogenetic Analysis. Mitochondrial DNA Part B; 2020; 5, pp. 1378-1380. [DOI: https://dx.doi.org/10.1080/23802359.2020.1735959]
30. Wang, Z.; Raymer, P.; Chen, Z. Isolation and Characterization of Microsatellite Markers for Stenotaphrum Trin. Using 454 Sequencing Technology. HortScience; 2017; 52, pp. 16-19. [DOI: https://dx.doi.org/10.21273/HORTSCI10521-16]
31. Reeves, S.A.; McBee, G.G. Nutritional Influences on Cold Hardiness of St. Augustinegrass (Stenotaphrum Secundatum) 1. Agron. J.; 1972; 64, pp. 447-450. [DOI: https://dx.doi.org/10.2134/agronj1972.00021962006400040011x]
32. Karcher, D.E.; Richardson, M.D. Quantifying Turfgrass Color Using Digital Image Analysis. Crop Sci.; 2003; 43, pp. 943-951. [DOI: https://dx.doi.org/10.2135/cropsci2003.9430]
33. Richardson, M.D.; Karcher, D.E.; Purcell, L.C. Quantifying Turfgrass Cover Using Digital Image Analysis. Crop Sci.; 2001; 41, pp. 1884-1888. [DOI: https://dx.doi.org/10.2135/cropsci2001.1884]
34. Morri, K.N.; Shearman, R.C. NTEP Turfgrass Evaluation Guidelines. National Turfgrass Evaluation Program. 2014; Available online: https://www.Ntep.Org/Pdf/Ratings.Pdf (accessed on 18 June 2024).
35. Bunderson, L.D.; Johnson, P.G.; Kopp, K.L.; Dyke, A.V. Tools for Evaluating Native Grasses as Low Maintenance Turf. HortTechnology; 2009; 19, pp. 626-632. [DOI: https://dx.doi.org/10.21273/HORTTECH.19.3.626]
36. Russell, T.R.; Karcher, D.E.; Richardson, M.D. Daily Light Integral Requirements of Warm-season Turfgrasses for Golf Course Fairways and Investigating in Situ Evaluation Methodology. Crop Sci.; 2020; 60, pp. 3301-3313. [DOI: https://dx.doi.org/10.1002/csc2.20234]
37. Gu, S. Lethal Temperature Coefficient–a New Parameter for Interpretation of Cold Hardiness. J. Hortic. Sci. Biotechnol.; 1999; 74, pp. 53-59. [DOI: https://dx.doi.org/10.1080/14620316.1999.11511071]
38. Dunn, J.H.; Bughrara, S.S.; Warmund, M.R.; Fresenburg, B.F. Low Temperature Tolerance of Zoysiagrasses. HortScience; 1999; 34, pp. 96-99. [DOI: https://dx.doi.org/10.21273/HORTSCI.34.1.96]
39. Wang, H.; Cheng, X.; Shi, Q.; Xu, J.; Chen, D.; Luo, C.; Liu, H.; Cao, L.; Huang, C. Cold Tolerance Identification of Nine Rosa L. Materials and Expression Patterns of Genes Related to Cold Tolerance in Rosa hybrida. Front. Plant Sci.; 2023; 14, 1209134. [DOI: https://dx.doi.org/10.3389/fpls.2023.1209134]
40. Jin, D.; Xu, Y.; Gui, H.; Zhang, H.; Dong, Q.; Sikder, R.K.; Wang, X.; Yang, G.; Song, M. Evaluation of Cotton (Gossypium hirsutum L.) Leaf Abscission Sensitivity Triggered by Thidiazuron through Membership Function Value. Plants; 2020; 10, 49. [DOI: https://dx.doi.org/10.3390/plants10010049]
41. Singh, A.; Kumar, A.; Kumar, R.; Prakash, J.; Kumar, N.; Verma, A.K. Evaluation of Salt Tolerance in Jamun (Syzygium cumini L. Skeels) Using Morpho-Physiological Traits and Membership Function Analysis. Sci. Hortic.; 2024; 326, 112742. [DOI: https://dx.doi.org/10.1016/j.scienta.2023.112742]
42. Li, J.; Zhang, Z.; Chong, K.; Xu, Y. Chilling Tolerance in Rice: Past and Present. J. Plant Physiol.; 2022; 268, 153576. [DOI: https://dx.doi.org/10.1016/j.jplph.2021.153576] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/34875419]
43. Wingler, A. Comparison of Signaling Interactions Determining Annual and Perennial Plant Growth in Response to Low Temperature. Front. Plant Sci.; 2015; 5, 125650. [DOI: https://dx.doi.org/10.3389/fpls.2014.00794] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25628637]
44. Zhang, Q.; Chen, Q.; Wang, S.; Hong, Y.; Wang, Z. Rice and Cold Stress: Methods for Its Evaluation and Summary of Cold Tolerance-Related Quantitative Trait Loci. Rice; 2014; 7, 24. [DOI: https://dx.doi.org/10.1186/s12284-014-0024-3] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25279026]
45. Yang, X.; Brown, H.E.; Teixeira, E.I.; Moot, D.J. Development of a Lucerne Model in APSIM next Generation: 1 Phenology and Morphology of Genotypes with Different Fall Dormancies. Eur. J. Agron.; 2021; 130, 126372. [DOI: https://dx.doi.org/10.1016/j.eja.2021.126372]
46. Trischuk, R.G.; Schilling, B.S.; Low, N.H.; Gray, G.R.; Gusta, L.V. Cold Acclimation, de-Acclimation and Re-Acclimation of Spring Canola, Winter Canola and Winter Wheat: The Role of Carbohydrates, Cold-Induced Stress Proteins and Vernalization. Environ. Exp. Bot.; 2014; 106, pp. 156-163. [DOI: https://dx.doi.org/10.1016/j.envexpbot.2014.02.013]
47. Janská, A.; Maršík, P.; Zelenková, S.; Ovesná, J. Cold Stress and Acclimation—What Is Important for Metabolic Adjustment?. Plant Biol.; 2010; 12, pp. 395-405. [DOI: https://dx.doi.org/10.1111/j.1438-8677.2009.00299.x] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20522175]
48. Dhont, C.; Castonguay, Y.; Avice, J.-C.; Chalifour, F.-P. VSP Accumulation and Cold-Inducible Gene Expression during Autumn Hardening and Overwintering of Alfalfa. J. Exp. Bot.; 2006; 57, pp. 2325-2337. [DOI: https://dx.doi.org/10.1093/jxb/erj204] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16798845]
49. Luca, V.D.; de Barreda, D.G. Effect of a Biostimulant on Bermudagrass Fall Color Retention and Spring Green-Up. Agronomy; 2021; 11, 608. [DOI: https://dx.doi.org/10.3390/agronomy11030608]
50. Munshaw, G.C.; Ervin, E.H.; Beasley, J.S.; Shang, C.; Zhang, X.; Parrish, D.J. Effects of Late-season Ethephon Applications on Cold Tolerance Parameters of Four Bermudagrass Cultivars. Crop Sci.; 2010; 50, pp. 1022-1029. [DOI: https://dx.doi.org/10.2135/cropsci2008.09.0565]
51. Annicchiarico, P.; Collins, R.P.; Fornasier, F.; Rhodes, I. Variation in Cold Tolerance and Spring Growth among Italian White Clover Populations. Euphytica; 2001; 122, pp. 407-416. [DOI: https://dx.doi.org/10.1023/A:1012918100232]
52. Caturegli, L.; Ramazani, R.; Volterrani, M.; Grossi, N.; Magni, S.; Macolino, S.; Pornaro, C.; Bella, S.L.; Tuttolomondo, T.; Minelli, A. St. Augustinegrass Accessions Planted in Northern, Central and Southern Italy: Growth and Morphological Traits during Establishment. Ital. J. Agron.; 2018; 13, pp. 332-337. [DOI: https://dx.doi.org/10.4081/ija.2018.1294]
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
Owing to the poor cold tolerance of Stenotaphrum Trin and the urgent need for shade-tolerant grass species in temperate regions of East China, this study evaluated the cold tolerance of 55 Stenotaphrum accessions, aiming to provide shade-tolerant materials for temperate regions. A fine cold-tolerant turfgrass should have both the advantages of delayed fall dormancy and early spring green-up. However, previous research on the cold resistance of turfgrass has mainly focused on the performance of the spring green-up, with less attention paid to the fall dormancy, which has affected the ornamental and application value of turfgrass. This study first dynamically investigated the leaf colour of each accession during the fall dormancy and the coverage during the spring green-up and evaluated the cold resistance of the accession through membership functions and cluster analysis. Significant differences in the cold resistance were found with the assignment of breeding lines to four categories. The weak correlation (R2 = 0.1682) between leaf colour during the fall dormancy and coverage during the spring green-up indicates that using the performance of a single period to represent the cold resistance of accessions is not appropriate. To test whether using the laboratory-based LT50 and stolon regrowth rating analysis can replace the above-improved method, we conducted a related analysis and found that the fit between these two methods is very poor. This phenomenon is attributed to the poor correlation between the laboratory-based parameters and the pot-investigated data. Therefore, this study presents a cold resistance evaluation method for Stenotaphrum that integrates performance in both the fall dormancy and spring green-up periods. This improved evaluation method cannot be simplified by the growth performance of a single period or replaced by using laboratory-based LT50 and stolon regrowth tests. With the help of this improved method, several excellent cold tolerance accessions (ST003, S13, and S12) were identified for temperate regions of East China.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Sanya Nanfan Research Institute, College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China;
2 The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China;
3 Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forest, Jurong 212400, China;