Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study aims to assess the performance of the Global Change Observation Mission—Climate (GCOM-C) ETindex estimation algorithm to estimate the actual evapotranspiration (ETa) in southeastern Afghanistan. Here, the GCOM-C ETindex algorithm was adopted to estimate the monthly ETa for the period from November 2016 to October 2017 using a series of Landsat 8, Thermal Infrared Sensor (TIRS) Band 10 satellite imagery. The estimation accuracy was evaluated by comparing the results with other estimates of ETa, namely the mapping evapotranspiration with the internalized calibration (METRIC) model, the MODIS Global Evapotranspiration Project (MOD16), the surface energy balance system (SEBS) tools, and with the crop evapotranspiration under standard conditions (ETc) as estimated by the FAO-56 procedure. The evaluation was made for irrigated wheat, maize, rice, and orchards and for non-irrigated bare soil land. The comparison of ETa values showed good correlation among the GCOM-C, METRIC, and FAO-56, while the MOD16 and SEBS showed significantly lower values of ETa. The agreement with the METRIC ETa implies that the simple GCOM-C algorithm successfully estimated the ETa in the region and that the precision was similar to that of the METRIC. This study provides the first high-quality evapotranspiration data with the spatial resolution of Landsat Band 10 data for the southeastern part of Afghanistan. The estimation procedure is straightforward, and its results are anticipated to enhance the understanding of regional hydrology.

Details

Title
Estimation of Evapotranspiration in South Eastern Afghanistan Using the GCOM-C Algorithm on the Basis of Landsat Satellite Imagery
Author
Wali, Emal 1 ; Tasumi, Masahiro 2   VIAFID ORCID Logo  ; Klemm, Otto 1   VIAFID ORCID Logo 

 Climatology Research Group, University of Münster, Heisenbergstr. 2, 48149 Münster, Germany; [email protected] 
 Department of Forest and Environmental Sciences, University of Miyazaki, Miyazaki 889-2192, Japan; [email protected] 
First page
95
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
23065338
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3084903964
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.