Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Data, in deep learning (DL), are crucial to detect ships in synthetic aperture radar (SAR) images. However, SAR image annotation limitations hinder DL-based SAR ship detection. A novel data-selection method and teacher–student model are proposed in this paper to effectively leverage sparse labeled data and improve SAR ship detection performance, based on the semi-supervised oriented object-detection (SOOD) framework. More specifically, we firstly propose a SAR data-scoring method based on fuzzy comprehensive evaluation (FCE), and discuss the relationship between the score distribution of labeled data and detection performance. A refined data selector (RDS) is then designed to adaptively obtain reasonable data for model training without any labeling information. Lastly, a Gaussian Wasserstein distance (GWD) and an orientation-angle deviation weighting (ODW) loss are introduced to mitigate the impact of strong scattering points on bounding box regression and dynamically adjusting the consistency of pseudo-label prediction pairs during the model training process, respectively. The experiments results on four open datasets have demonstrated that our proposed method can achieve better SAR ship detection performances on low-proportion labeled datasets, compared to some existing methods. Therefore, our proposed method can effectively and efficiently reduce the burden of SAR ship data labeling and improve detection capacities as much as possible.

Details

Title
Data Matters: Rethinking the Data Distribution in Semi-Supervised Oriented SAR Ship Detection
Author
Yang, Yimin 1   VIAFID ORCID Logo  ; Lang, Ping 1   VIAFID ORCID Logo  ; Yin, Junjun 2   VIAFID ORCID Logo  ; He, Yaomin 3   VIAFID ORCID Logo  ; Yang, Jian 1 

 Department of Electronic Engineering, Tsinghua University, Beijing 100084, China; [email protected] (Y.Y.); [email protected] (P.L.) 
 School of Computer and Communication Engineering, University of Science and Technology, Beijing 100083, China; [email protected] 
 Institute of Systems Engineering, Academy of Military Sciences, People’s Liberation Army of China, Beijing 100071, China; [email protected] 
First page
2551
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3085010106
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.