Abstract

Light-matter superposition states obtained via strong coupling play a decisive role in quantum information processing, but the deleterious effects of material dissipation and environment-induced decoherence inevitably destroy coherent light-matter polaritons over time. Here, we propose the use of coherent perfect absorption under near-field driving to prepare and protect the polaritonic states of a single quantum emitter interacting with a plasmonic nanocavity at room temperature. Our scheme of quantum nanoplasmonic coherent perfect absorption leverages an inherent frequency specificity to selectively initialize the coupled system in a chosen plasmon-emitter dressed state, while the coherent, unidirectional and non-perturbing near-field energy transfer from a proximal plasmonic waveguide can in principle render the dressed state robust against dynamic dissipation under ambient conditions. Our study establishes a previously unexplored paradigm for quantum state preparation and coherence preservation in plasmonic cavity quantum electrodynamics, offering compelling prospects for elevating quantum nanophotonic technologies to ambient temperatures.

Quantum states are incredibly sensitive to their environment, making them perfect for ultrasensitive quantum detection—if they can be maintained long enough. Here, the authors showed that they can ‘immortalize’ the excited state of a coupled light-matter system using a technique called ‘coherent perfect absorption’.

Details

Title
Room-temperature quantum nanoplasmonic coherent perfect absorption
Author
Lai, Yiming 1 ; Clarke, Daniel D. A. 1   VIAFID ORCID Logo  ; Grimm, Philipp 2   VIAFID ORCID Logo  ; Devi, Asha 1 ; Wigger, Daniel 1 ; Helbig, Tobias 3   VIAFID ORCID Logo  ; Hofmann, Tobias 3   VIAFID ORCID Logo  ; Thomale, Ronny 3   VIAFID ORCID Logo  ; Huang, Jer-Shing 4   VIAFID ORCID Logo  ; Hecht, Bert 2   VIAFID ORCID Logo  ; Hess, Ortwin 1   VIAFID ORCID Logo 

 Trinity College Dublin, School of Physics and CRANN Institute, Dublin 2, Ireland (GRID:grid.8217.c) (ISNI:0000 0004 1936 9705) 
 University of Würzburg, Nano-Optics & Biophotonics Group, Department of Experimental Physics 5, and Röntgen Research Center for Complex Material Research, Physics Institute, Würzburg, Germany (GRID:grid.8379.5) (ISNI:0000 0001 1958 8658) 
 Julius-Maximilians-Universität Würzburg, Theoretische Physik I, Würzburg, Germany (GRID:grid.8379.5) (ISNI:0000 0001 1958 8658) 
 Leibniz Institute of Photonic Technology, Jena, Germany (GRID:grid.418907.3) (ISNI:0000 0004 0563 7158); Friedrich-Schiller-Universität Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Jena, Germany (GRID:grid.9613.d) (ISNI:0000 0001 1939 2794); Academia Sinica, Research Center for Applied Sciences, Taipei, Taiwan (GRID:grid.28665.3f) (ISNI:0000 0001 2287 1366); National Chiao Tung University, Department of Electrophysics, Hsinchu, Taiwan (GRID:grid.260539.b) (ISNI:0000 0001 2059 7017) 
Pages
6324
Publication year
2024
Publication date
2024
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3085026640
Copyright
© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.