Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In order to explore the combustion performance of a non-road air-cooled two-cylinder turbocharged diesel engine, an experiment on the effects of engine compression ratio, combustion chamber shape and injection timing were systematically conducted in this study. Moreover, the effects of intake air conditions on combustion performance were numerically investigated using the one-dimensional simulation platform. The findings of this study could help provide new insights for promoting the sustainable development of diesel engines used in generator sets. The results show that the increase in intake air temperature can delay the combustion center of gravity and improve the combustion performance and the sustainability of diesel engines. The decrease in intake air pressure leads to a reduction in oxygen amount during the combustion process, thus causing the deterioration of cylinder pressure and combustion performance. By modifying the combustion chamber, the ignition delay and combustion duration are each extended by 1.6 degrees and 4.2 degrees under 100% engine load. The ignition delay and combustion duration are not obviously affected by modifying the combustion chamber shape under 25% and 50% loads. By increasing the compression ratio from 19.5 to 20.5, the ignition delay and combustion duration are shortened, which could enhance the cylinder pressure and heat release rate. However, reducing the compression ratio from 19.5 to 18.5 could significantly decrease the heat release rate. Under middle and low loads, combustion duration is less affected by injection timing. Under 100% load, the peak cylinder pressure increases to 11.4 MPa, and the ignition delay is shortened by advancing injection timing from −17 °CA to −20 °CA.

Details

Title
Exploring the Combustion Performance of a Non-Road Air-Cooled Two-Cylinder Turbocharged Diesel Engine
Author
Yao, Xingtian 1 ; Dong, Yunxiao 1 ; Li, Xiang 1   VIAFID ORCID Logo  ; Ni, Peiyong 1 ; Zhang, Xuewen 1 ; Fan, Yuhang 2 

 School of Mechanical Engineering, Nantong University, Nantong 226019, China; [email protected] (X.Y.); [email protected] (Y.D.); [email protected] (X.L.); [email protected] (P.N.) 
 Department of Mechanical Science, Tokushima University, Tokushima 770-0855, Japan; [email protected] 
First page
6031
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3085059009
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.