Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper presents an innovative approach towards space–ground integrated communication systems by combining terrestrial cellular networks, UAV networks, and satellite networks, leveraging advanced slicing technology. The proposed architecture addresses the challenges posed by future user surges and aims to reduce network overhead effectively. Central to our approach is the introduction of a marginal mobile station (MS)-assisted network resource allocation decision architecture. Building upon this foundation, we introduce the DP-DQN model, an enhanced decision-making algorithm tailored for MSs in dynamic network environments. Furthermore, this study introduces a feedback mechanism to ensure the accuracy and adaptability of the marginalization model over time. Through extensive simulations and experimental validations, our DP-DQN-based edge decision method demonstrates substantial potential in alleviating core network overhead while improving success access ratios compared to conventional methods.

Details

Title
Distributed Resources Allocation Method for Space–Ground Integrated Mobile Communication System
Author
Zhao, Tingyin 1   VIAFID ORCID Logo  ; Li, Zhidu 1   VIAFID ORCID Logo 

 School of Communications and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; [email protected]; Information and Communications Institute, Chongqing University of Posts and Telecommunications, Chongqing 400065, China 
First page
4711
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3085062609
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.