It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Dynamic control of the optical properties of gold nanostructures is crucial for advancing photonics technologies spanning optical signal processing, on-chip light sources and optical computing. Despite recent advances in tunable plasmons in gold nanostructures, most studies are limited to the linear or static regime, leaving the dynamic manipulation of nonlinear optical properties unexplored. This study demonstrates the voltage-controlled Kerr nonlinear optical response of gold nanofilms via the electrothermal effect. By applying relatively low voltages (~10 V), the nonlinear absorption coefficient and refractive index are reduced by 40.4% and 33.1%, respectively, due to the increased damping coefficient of gold nanofilm. Furthermore, a voltage-controlled all-fiber gold nanofilm saturable absorber is fabricated and used in mode-locked fiber lasers, enabling reversible wavelength-tuning and operation regimes switching (e.g., mode-locking—Q-switched mode-locking). These findings advance the understanding of electrically controlled nonlinear optical responses in gold nanofilms and offer a flexible approach for controlling fiber laser operations.
Here the authors demonstrate voltage-controlled nonlinear optical response of gold nanofilm via electrothermal effect. They fabricate a voltage-controlled saturable absorber for achieving wavelength-tunability/operation-regime switching in a fiber laser.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Jilin University, State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Changchun, China (GRID:grid.64924.3d) (ISNI:0000 0004 1760 5735)