It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
To enhance the energy efficiency and financial gains of the park integrated energy system (PIES). This paper constructs a bi-level optimization model of PIES-cloud energy storage (CES) based on source-load uncertainty. Firstly, the scheduling framework of PIES with refined power-to-gas (P2G), carbon capture and storage (CCS) and CES coupling is constructed. Moreover, a bi-level optimization model with the upper tier subject being the PIES operator and the lower tier subject being the CES operator is established under the ladder-type carbon price mechanism with reward and punishment (LCPMRP). Then a proposed entropy weight adaptive information gap decision theory method (EAIGDT) is proposed to eliminate the subjectivity factor and retain its non-probabilistic features while dealing with multiple source-load uncertainties, and according to the operator’s risk preference to build risk-averse (RA) and risk-seeking (RS) strategies, respectively. Finally, the measured data in a certain area of Xinjiang verifies the proposed optimal scheduling method. The results show that the method can effectively take into account the interests of various subjects and realise PIES low-carbon economic operation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Xinjiang University, Engineering Research Center of Education Ministry for Renewable Energy Power Generation and Grid Connection Control, Urumqi, China (GRID:grid.413254.5) (ISNI:0000 0000 9544 7024)