Abstract
Random tensor networks (RTNs) have proved to be fruitful tools for modelling the AdS/CFT correspondence. Due to their flat entanglement spectra, when discussing a given boundary region R and its complement
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 University of California, Department of Physics, Santa Barbara, USA (GRID:grid.133342.4) (ISNI:0000 0004 1936 9676)
2 Chinese Academy of Sciences, CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Beijing, China (GRID:grid.9227.e) (ISNI:0000000119573309); University of Chinese Academy of Sciences, School of Physical Sciences, Beijing, China (GRID:grid.410726.6) (ISNI:0000 0004 1797 8419)