Full text

Turn on search term navigation

© 2024 O’Shea et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Periplasmic binding proteins (PBPs) are bacterial proteins commonly used as scaffolds for substrate-detecting biosensors. In these biosensors, effector proteins (for example fluorescent proteins) are inserted into a PBP such that the effector protein’s output changes upon PBP-substate binding. The insertion site is often determined by comparison of PBP apo/holo crystal structures, but random insertion libraries have shown that this can miss the best sites. Here, we present a PBP biosensor design method based on residue contact analysis from molecular dynamics. This computational method identifies the best previously known insertion sites in the maltose binding PBP, and suggests further previously unknown sites. We experimentally characterise fluorescent protein insertions at these new sites, finding they too give functional biosensors. Furthermore, our method is sufficiently flexible to both suggest insertion sites compatible with a variety of effector proteins, and be applied to binding proteins beyond PBPs.

Details

Title
Computational design of Periplasmic binding protein biosensors guided by molecular dynamics
Author
Jack M. O’Shea  VIAFID ORCID Logo  ; Doerner, Peter  VIAFID ORCID Logo  ; Richardson, Annis  VIAFID ORCID Logo  ; Wood, Christopher W  VIAFID ORCID Logo 
First page
e1012212
Section
Research Article
Publication year
2024
Publication date
Jun 2024
Publisher
Public Library of Science
ISSN
1553734X
e-ISSN
15537358
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3086942188
Copyright
© 2024 O’Shea et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.