It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Members of the Metal Tolerance Protein (MTP) family are critical in mediating the transport and tolerance of divalent metal cations. Despite their significance, the understanding of MTP genes in mustard (Brassica juncea) remains limited, especially regarding their response to heavy metal (HM) stress. In our study, we identified MTP gene sets in Brassica rapa (17 genes), Brassica nigra (18 genes), and B. juncea (33 genes) using the HMMER (Cation_efflux; PF01545) and BLAST analysis. For the 33 BjMTPs, a comprehensive bioinformatics analysis covering the physicochemical properties, phylogenetic relationships, conserved motifs, protein structures, collinearity, spatiotemporal RNA-seq expression, GO enrichment, and expression profiling under six HM stresses (Mn2+, Fe2+, Zn2+, Cd2+, Sb3+, and Pb2+) were carried out. According to the findings of physicochemical characteristics, phylogenetic tree, and collinearity, the allopolyploid B. juncea’s MTP genes were inherited from its progenitors, B. rapa and B. nigra, with minimal gene loss during polyploidization. Members of the BjMTP family exhibited conserved motifs, promoter elements, and expression patterns across subgroups, consistent with the seven evolutionary branches (G1, G4–G9, and G12) of the MTPs. Further, spatiotemporal expression profiling under HM stresses successfully identified specific genes and crucial cis-regulatory elements associated with the response of BjMTPs to HM stresses. These findings may contribute to the genetic improvement of B. juncea for enhanced HM tolerance, facilitating the remediation of HM-contaminated areas.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Hunan University of Humanities, Science and Technology, College of Agriculture and Biology, Key Laboratory of Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan of College of Hunan Province, Loudi, China (GRID:grid.440781.e) (ISNI:0000 0004 1759 997X)
2 Hunan Agricultural University, College of Agronomy, Changsha, China (GRID:grid.257160.7) (ISNI:0000 0004 1761 0331)
3 Hunan Academy of Agricultural Sciences, Crop Research Institute, Changsha, China (GRID:grid.410598.1) (ISNI:0000 0004 4911 9766)