Abstract
This paper introduces TC-Llama 2, a novel application of large language models (LLMs) in the technology-commercialization field. Traditional methods in this field, reliant on statistical learning and expert knowledge, often face challenges in processing the complex and diverse nature of technology-commercialization data. TC-Llama 2 addresses these limitations by utilizing the advanced generalization capabilities of LLMs, specifically adapting them to this intricate domain. Our model, based on the open-source LLM framework, Llama 2, is customized through instruction tuning using bilingual Korean-English datasets. Our approach involves transforming technology-commercialization data into formats compatible with LLMs, enabling the model to learn detailed technological knowledge and product hierarchies effectively. We introduce a unique model evaluation strategy, leveraging new matching and generation tasks to verify the alignment of the technology-commercialization relationship in TC-Llama 2. Our results, derived from refining task-specific instructions for inference, provide valuable insights into customizing language models for specific sectors, potentially leading to new applications in technology categorization, utilization, and predictive product development.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Yonsei University, Department of Statistics and Data Science, Seoul, Republic of Korea (GRID:grid.15444.30) (ISNI:0000 0004 0470 5454)
2 University of Seoul, Department of Artificial Intelligence, Seoul, Republic of Korea (GRID:grid.267134.5) (ISNI:0000 0000 8597 6969)
3 KISTI, Technology Commercialization Research Center, Seoul, Republic of Korea (GRID:grid.249964.4) (ISNI:0000 0001 0523 5253)




