Full text

Turn on search term navigation

Copyright John Wiley & Sons, Inc. 2024

Abstract

The synthesis of nanometer‐thick (≈3 nm) gallium oxynitride (GaOxNy) layers with a variable stoichiometry is reported. The approach primarily exploits the liquid metal chemistry (LMC) technique and promises easier integration of 2D materials onto photonic devices compared to traditional top‐down and bottom‐up methods. The fabrication follows a two‐step process, involving first liquid metal‐based printing of a nanometer‐thick layer of gallium oxide (Ga2O3), followed a plasma‐enhanced nitridation reaction. Control over nitridation parameters (plasma power, exposure time) allows adjustment of the GaOxNy layer's composition, granting access to compounds with distinct optical properties (e.g., a 20% index variation), as demonstrated by ellipsometry and density functional theory (DFT) simulations. DFT provides a microscopic understanding of the effect of the bond polarization and crystallinity on the optical properties of GaOxNy compounds. These findings expand the knowledge of ultrathin GaOxNy alloys, which are poorly studied with respect to their gallium nitride (GaN) and Ga2O3 counterparts. They also represent an essential step toward integrating such 2D materials into photonic chips and offer new opportunities to improve the performance of hybrid optoelectronic devices.

Details

Title
Liquid‐Metal Fabrication of Ultrathin Gallium Oxynitride Layers with Tunable Stoichiometry
Author
Pedram, Panteha 1   VIAFID ORCID Logo  ; Zavabeti, Ali 2 ; Syed, Nitu 3 ; Slassi, Amine 4 ; Nguyen, Chung Kim 1 ; Fornacciari, Benjamin 5 ; Lamirand, Anne 5 ; Galipaud, Jules 6 ; Calzolari, Arrigo 4 ; Orobtchouk, Régis 5 ; Boes, Andreas 7 ; Daeneke, Torben 1 ; Cueff, Sébastien 5 ; Mitchell, Arnan 1 ; Monat, Christelle 5 

 School of Engineering, RMIT University, Melbourne, VIC, Australia 
 Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, Australia 
 School of Physics, The University of Melbourne, Parkville, VIC, Australia 
 CNR-NANO Istituto Nanoscienze, Modena, Italy 
 Institut des Nanotechnologies de Lyon, UMR CNRS, Ecole Centrale de Lyon, Université de Lyon, Écully, France 
 Laboratory of Tribology and System Dynamics, Ecole Centrale de Lyon, Université de Lyon, Écully, France 
 School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, SA, Australia 
Section
Research Articles
Publication year
2024
Publication date
Mar 1, 2024
Publisher
John Wiley & Sons, Inc.
ISSN
26999293
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3089861426
Copyright
Copyright John Wiley & Sons, Inc. 2024