It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The in-in formalism provides a way to systematically organize the calculation of primordial correlation functions. Although its theoretical foundations are now firmly settled, the treatment of total time derivative interactions, incorrectly trivialized as “boundary terms”, has been the subject of intense discussions and conceptual mistakes. In this work, we demystify the use of total time derivatives — as well as terms proportional to the linear equations of motion — and show that they can lead to artificially large contributions cancelling at different orders of the in-in operator formalism. We discuss the treatment of total time derivative interactions in the Lagrangian path integral formulation of the in-in perturbation theory, and we showcase the importance of interaction terms proportional to linear equations of motion. We then provide a new route to the calculation of primordial correlation functions, which avoids the generation of total time derivatives, by working directly at the level of the full Hamiltonian in terms of phase-space variables. Instead of integrating by parts, we perform canonical transformations to simplify interactions. We explain how to retrieve correlation functions of the initial phase-space variables from the knowledge of the ones after canonical transformations. As an important first application, we find the explicit sizes of Hamiltonian cubic interactions in single-field inflation with canonical kinetic terms and for any background evolution, straight in terms of the primordial curvature perturbation and its canonical conjugate momentum, as well as the corresponding ones in the tensor sector, and the ones mixing scalars and tensors. We also briefly comment on quartic interactions. Our results are important for performing complete calculations of exchange diagrams in inflation, such as the (scalar and tensor) exchange trispectrum and the one-loop power spectrum. Being already written in a form amenable to characterize quantum properties of primordial fluctuations, they also promise to shed light on the non-linear dynamics of quantum states during inflation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 New York University, Center for Cosmology and Particle Physics, New York, USA (GRID:grid.137628.9) (ISNI:0000 0004 1936 8753)
2 Université Paris Cité, Laboratoire de Physique de l’École Normale Supérieure, ENS, CNRS, Université PSL, Sorbonne Université, Paris, France (GRID:grid.508487.6) (ISNI:0000 0004 7885 7602)