Full Text

Turn on search term navigation

© 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Microtubules are pivotal in diverse cellular functions encompassing cell signaling, morphology, intracellular trafficking, and cell mitosis/division. They are validated targets for disease treatment, notably hematological cancers and solid tumors. Microtubule‐targeting agents (MTAs) exert their effects by modulating microtubule dynamics, impeding cell proliferation, and promoting cell death. Recent advances in structural biology have unveiled novel perspectives for investigating multiple binding sites and mechanisms of action used by MTAs. In this review, we first provide an overview of the intricate structure and dynamics of microtubules. Then we explore the seven binding sites and the three primary strategies (stabilization, destabilization, and degradation) harnessed by MTAs. Furthermore, we introduce the emerging domain of microtubule‐targeting degraders, exemplified by PROteolysis TArgeting Chimeras and small‐molecule degraders, which enable precise degradation of specific microtubule‐associated proteins implicated in cancer pathogenesis. Additionally, we discuss the promising realm of precision‐targeted approaches, including antibody–drug conjugates and the utilization of photopharmacology in MTAs. Lastly, we provide a comprehensive overview of the clinical applications of microtubule‐targeting therapies, assessing their efficacy and current challenges. We aim to provide a global picture of MTAs development as well as insights into the microtubule‐targeting drug discovery for cancer treatment.

Details

Title
Microtubule‐targeting agents for cancer treatment: Seven binding sites and three strategies
Author
Wang, Xingyu 1 ; Gigant, Benoît 2   VIAFID ORCID Logo  ; Zheng, Xi 3 ; Chen, Qiang 1   VIAFID ORCID Logo 

 Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China 
 Université Paris‐Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif‐sur‐Yvette, France 
 Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China 
Section
REVIEW ARTICLES
Publication year
2023
Publication date
Sep 1, 2023
Publisher
John Wiley & Sons, Inc.
e-ISSN
27696448
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3090877229
Copyright
© 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.