Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With increasing electronic medical data and the development of artificial intelligence, clinical decision support systems (CDSSs) assist clinicians in diagnosis and prescription. Traditional knowledge-based CDSSs follow an accumulated medical knowledgebase and a predefined rule system, which clarifies the decision-making process; however, maintenance cost issues exist in the medical data quality control and standardization processes. Non-knowledge-based CDSSs utilize vast amounts of data and algorithms to effectively make decisions; however, the deep learning black-box problem causes unreliable results. EXplainable Artificial Intelligence (XAI)-based CDSSs provide valid rationales and explainable results. These systems ensure trustworthiness and transparency by showing the recommendation and prediction result process using explainable techniques. However, existing systems have limitations, such as the scope of data utilization and the lack of explanatory power of AI models. This study proposes a new XAI-based CDSS framework to address these issues; introduces resources, datasets, and models that can be utilized; and provides a foundation model to support decision-making in various disease domains. Finally, we propose future directions for CDSS technology and highlight societal issues that need to be addressed to emphasize the potential of CDSSs in the future.

Details

Title
XAI-Based Clinical Decision Support Systems: A Systematic Review
Author
Se Young Kim 1   VIAFID ORCID Logo  ; Dae Ho Kim 2 ; Min Ji Kim 2 ; Hyo Jin Ko 2 ; Ok Ran Jeong 2 

 Department of Nursing, Changwon National University, Changwon-si 51140, Republic of Korea; [email protected] 
 School of Computing, Gachon University, Seongnam-si 13120, Republic of Korea; [email protected] (D.H.K.); [email protected] (M.J.K.); [email protected] (H.J.K.) 
First page
6638
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3090892298
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.