Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Permanent-magnet-assisted synchronous reluctance motors (PMA-SynRMs) are widely used in modern industry as a kind of electromagnetic energy conversion device with high output torque, high power density, high efficiency, and excellent speed regulation. In this paper, an asymmetric-rotor PMA-SynRM combined with a Halbach array is proposed based on the conventional PMA-SynRM without modifying the amount of permanent magnet. With the finite element no-load analysis, it is proven that the permanent magnet arrangement of this method can achieve better flux focusing effect and magnetic-axis-shift (MAS) effect. A significant increase and shift of the air-gap magnetic density has also been observed. Meanwhile, the load simulation demonstrated that the proposed model possesses higher utilization of permanent magnet torque and reluctance torque compared to the conventional model. In addition, a multi-objective optimization has been performed for the rotor structure of the proposed model, and the optimized model improved the average torque by 25.32% and reduced the torque ripple by 76.92% compared to the conventional model. Finally, the constant power speed range (CPSR) performance and anti-demagnetization performance have been analyzed for the three models. The results showed that the proposed and optimized models performed better on constant power speed range, and all three models of permanent magnets had good anti-demagnetization performance. The maximum demagnetization rate of the optimized model is reduced by 13.84% compared to the proposed model at an operating condition of 200 °C and nine times the rated current.

Details

Title
Design and Multi-Objective Optimization of an Asymmetric-Rotor Permanent-Magnet-Assisted Synchronous Reluctance Motor for Improved Torque Performance
Author
Xing, Feng 1   VIAFID ORCID Logo  ; Zhang, Jiajia 1 ; Zhang, Mingming 2 ; Qin, Caiyan 2 

 School of Electrical Engineering, Liaoning University of Technology, Jinzhou 121001, China 
 School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China 
First page
6734
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3090893212
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.