Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Violence is a serious threat to societal health; preventing violence in airports, airplanes, and spacecraft is crucial. This study proposes the Violence-YOLO model to detect violence accurately in real time in complex environments, enhancing public safety. The model is based on YOLOv9’s Generalized Efficient Layer Aggregation Network (GELAN-C). A multilayer SimAM is incorporated into GELAN’s neck to identify attention regions in the scene. YOLOv9 modules are combined with RepGhostNet and GhostNet. Two modules, RepNCSPELAN4_GB and RepNCSPELAN4_RGB, are innovatively proposed and introduced. The shallow convolution in the backbone is replaced with GhostConv, reducing computational complexity. Additionally, an ultra-lightweight upsampler, Dysample, is introduced to enhance performance and reduce overhead. Finally, Focaler-IoU addresses the neglect of simple and difficult samples, improving training accuracy. The datasets are derived from RWF-2000 and Hockey. Experimental results show that Violence-YOLO outperforms GELAN-C. [email protected] increases by 0.9%, computational load decreases by 12.3%, and model size is reduced by 12.4%, which is significant for embedded hardware such as the Raspberry Pi. Violence-YOLO can be deployed to monitor public places such as airports, effectively handling complex backgrounds and ensuring accurate and fast detection of violent behavior. In addition, we achieved 84.4% mAP on the Pascal VOC dataset, which is a significant reduction in model parameters compared to the previously refined detector. This study offers insights for real-time detection of violent behaviors in public environments.

Details

Title
Violence-YOLO: Enhanced GELAN Algorithm for Violence Detection
Author
Xu, Wenbin 1 ; Zhu, Dingju 2 ; Deng, Renfeng 1 ; Yung, KaiLeung 3 ; Ip, Andrew W H 4   VIAFID ORCID Logo 

 School of Software, South China Normal University, Foshan 528000, China 
 School of Software, South China Normal University, Foshan 528000, China; School of Computer Science, South China Normal University, Guangzhou 510000, China 
 Department of Industrial and Systems Engineering, Hong Kong Polytechnic University, Hong Kong 999077, China 
 Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada 
First page
6712
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3090893885
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.