Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Schiff bases are compounds that are widely distributed in nature and have practical value for industry and biomedicine. Another important use of Schiff bases is identifying metal ions and different molecules, including proteins. Their proneness to hydrolysis limits the utilization of Schiff bases to mainly non-aqueous solutions. However, by introducing –OH and –SH substituents to aromatic amine-bearing rings, it is possible to increase the resilience of the Schiff base to destruction in water. The present paper discusses how the hydroxyl or thiol group influences the spectral properties and kinetics of the hydrolysis and formation of Schiff bases derived from pyridoxal 5′-phosphate and aniline, 2-hydroxyaniline, and 2-mercaptoaniline using quantum chemical data. The spectral variation between different imines can be explained by taking into account the geometry and frontier molecular orbital alteration induced by the substituents. The changes in the hydrolysis rate are analyzed using the computed values of local reactivity indices.

Details

Title
Schiff Bases Derived from Pyridoxal 5′-Phosphate and 2-X-Phenylamine (X = H, OH, SH): Substituent Effects on UV-Vis Spectra and Hydrolysis Kinetics
Author
Zavalishin, Maksim N 1   VIAFID ORCID Logo  ; Kiselev, Aleksei N 2   VIAFID ORCID Logo  ; Gamov, George A 1   VIAFID ORCID Logo 

 Department of General Chemical Technology, Ivanovo State University of Chemistry and Technology, Sheremetevskii Pr. 7, Ivanovo 153000, Russia; [email protected] 
 G.A. Krestov Institute of Solution Chemistry, Russian Academy of Science, Akademicheskaya Str. 1, Ivanovo 153045, Russia; [email protected] 
First page
3504
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3090933938
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.