Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Froth flotation is a widespread and important method for mineral separation, significantly influencing the purity and quality of extracted minerals. Traditionally, workers need to control chemical dosages by observing the visual characteristics of flotation froth, but this requires considerable experience and operational skills. This paper designs a deep ensemble learning-based sensor for flotation froth image recognition to monitor actual flotation froth working conditions, so as to assist operators in facilitating chemical dosage adjustments and achieve the industrial goals of promoting concentrate grade and mineral recovery. In our approach, training and validation data on flotation froth images are partitioned in K-fold cross validation, and deep neural network (DNN) based learners are generated through pre-trained DNN models in image-enhanced training data, in order to improve their generalization and robustness. Then, a membership function utilizing the performance information of the DNN-based learners during the validation is proposed to improve the recognition accuracy of the DNN-based learners. Subsequently, a technique for order preference by similarity to an ideal solution (TOPSIS) based on the F1 score is proposed to select the most probable working condition of flotation froth images through a decision matrix composed of the DNN-based learners’ predictions via a membership function, which is adopted to optimize the combination process of deep ensemble learning. The effectiveness and superiority of the designed sensor are verified in a real industrial gold–antimony froth flotation application.

Details

Title
Deep Ensemble Learning-Based Sensor for Flotation Froth Image Recognition
Author
Zhou, Xiaojun; He, Yiping
First page
5048
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3090958138
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.