It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The nanoscale fibrillar morphology, featuring long-range structural order, provides abundant interfaces for efficient exciton dissociation and high-quality pathways for effective charge transport, is a promising morphology for high performance organic solar cells. Here, we synthesize a thiophene terminated non-fullerene acceptor, L8-ThCl, to induce the fibrillization of both polymer donor and host acceptor, that surpasses the 20% efficiency milestone of organic solar cells. After adding L8-ThCl, the original weak and less continuous nanofibrils of polymer donors, i.e. PM6 or D18, are well enlarged and refined, whilst the host acceptor L8-BO also assembles into nanofibrils with enhanced structural order. By adapting the layer-by-layer deposition method, the enhanced structural order can be retained to significantly boost the power conversion efficiency, with specific values of 19.4% and 20.1% for the PM6:L8-ThCl/L8-BO:L8-ThCl and D18:L8-ThCl/L8-BO:L8-ThCl devices, with the latter being certified 20.0%, which is the highest certified efficiency reported so far for single-junction organic solar cells.
The nanoscale fibrillar morphology of the photoactive layer is critical to improve performance of organic solar cells. Here, the authors incorporate thiophene terminal groups in the non-fullerene acceptor, realizing nanofibrils with enhanced structural order and certified device efficiency of 20%.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Wuhan University of Technology, School of Materials Science and Engineering, Wuhan, China (GRID:grid.162110.5) (ISNI:0000 0000 9291 3229)
2 Wuhan University of Technology, School of Materials and Microelectronics, Wuhan, China (GRID:grid.162110.5) (ISNI:0000 0000 9291 3229)
3 Wuhan University of Technology, School of Materials Science and Engineering, Wuhan, China (GRID:grid.162110.5) (ISNI:0000 0000 9291 3229); Wuhan University of Technology, School of Materials and Microelectronics, Wuhan, China (GRID:grid.162110.5) (ISNI:0000 0000 9291 3229)