It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
SuFEx click chemistry demonstrates remarkable molecular assembly capabilities. However, the effective utilization of alkyl sulfonyl fluoride hubs in SuFEx chemistry, particularly in reactions with alcohols and primary amines, presents considerable challenges. This study pioneers an intramolecular chalcogen bonding activated SuFEx (S-SuFEx) click chemistry employing alkyl sulfonyl fluorides with γ-S as the activating group. The ChB-activated alkyl sulfonyl fluorides can react smoothly with phenols, alcohols, and amines, exhibiting enhanced reactivity compared to SO2F2. Excellent yields have been achieved with all 75 tested substrates. Pioneering the application of S-SuFEx chemistry, we highlight its immense potential in organic-inorganic linking, considering the critical role of interfacial covalent bonding in material fabrication. The S-SuFEx hub 1c, incorporating a trialkoxy silane group has been specifically designed and synthesized for organic-inorganic linking. In a simple step, 1c efficiently anchors various organic compounds onto surfaces of inorganic materials, forming functionalized surfaces with properties such as antibacterial activity, hydrophobicity, and fluorescence.
Establishing efficient covalent linkages between functional organic molecules and inorganic materials remains a significant challenge. Herein, the authors report an intramolecular chalcogen bonding activated SuFEx click chemistry and establish a clickable platform for the efficient linkage of organic compounds and inorganic materials.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 China Agricultural University, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Beijing, China (GRID:grid.22935.3f) (ISNI:0000 0004 0530 8290)
2 University of Nottingham Ningbo China, Department of Chemical and Environmental Engineering, Ningbo, China (GRID:grid.50971.3a) (ISNI:0000 0000 8947 0594)