It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Purpose
To develop and validate a nomogram based on 3D-PDU parameters and clinical characteristics to predict LNM and LVSI in early-stage cervical cancer preoperatively.
Materials and methods
A total of first diagnosis 138 patients with cervical cancer who had undergone 3D-PDU examination before radical hysterectomy plus lymph dissection between 2014 and 2019 were enrolled for this study. Multivariate logistic regression analyses were performed to analyze the 3D-PDU parameters and selected clinicopathologic features and develop a nomogram to predict the probability of LNM and LVSI in the early stage. ROC curve was used to evaluate model differentiation, calibration curve and Hosmer-Lemeshow test were used to evaluate calibration, and DCA was used to evaluate clinical practicability.
Results
Menopause status, FIGO stage and VI were independent predictors of LNM. BMI and maximum tumor diameter were independent predictors of LVSI. The predicted AUC of the LNM and LSVI models were 0.845 (95%CI,0.765–0.926) and 0.714 (95%CI,0.615–0.813). Calibration curve and H-L test (LNM groups P = 0.478; LVSI P = 0.783) all showed that the predicted value of the model had a good fit with the actual observed value, and DCA indicated that the model had a good clinical net benefit.
Conclusion
The proposed nomogram based on 3D-PDU parameters and clinical characteristics has been proposed to predict LNM and LVSI with high accuracy, demonstrating for the first time the potential of non-invasive prediction. The probability derived from this nomogram may have the potential to provide valuable guidance for physicians to develop clinical individualized treatment plans of FIGO patients with early cervical cancer.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer