It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Uterine corpus endometrial carcinoma (UCEC) is a prevalent gynecologic malignancy with a favorable prognosis if detected early. However, there is a lack of accurate and reliable early detection tests for UCEC. This study aims to develop a precise and non-invasive diagnostic method for UCEC using circulating cell-free DNA (cfDNA) fragmentomics.
Methods
Peripheral blood samples were collected from all participants, and cfDNA was extracted for analysis. Low-coverage whole-genome sequencing was performed to obtain cfDNA fragmentomics data. A robust machine learning model was developed using these features to differentiate between UCEC and healthy conditions.
Results
The cfDNA fragmentomics-based model showed high predictive power for UCEC detection in training (n = 133; AUC 0.991) and validation cohorts (n = 89; AUC 0.994). The model manifested a specificity of 95.5% and a sensitivity of 98.5% in the training cohort, and a specificity of 95.5% and a sensitivity of 97.8% in the validation cohort. Physiological variables and preanalytical procedures had no significant impact on the classifier’s outcomes. In terms of clinical benefit, our model would identify 99% of Chinese UCEC patients at stage I, compared to 21% under standard care, potentially raising the 5-year survival rate from 84 to 95%.
Conclusion
This study presents a novel approach for the early detection of UCEC using cfDNA fragmentomics and machine learning showing promising sensitivity and specificity. Using this model in clinical practice could significantly improve UCEC management and control, enabling early intervention and better patient outcomes. Further optimization and validation of this approach are warranted to establish its clinical utility.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer