It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Most data mining algorithms and tools stop at the mining and delivery of patterns satisfying expected technical interestingness. There are often many patterns mined but business people either are not interested in them or do not know what follow-up actions to take to support their business decisions. This issue has seriously affected the widespread employment of advanced data mining techniques in greatly promoting enterprise operational quality and productivity.
In this thesis, a formal and systematic view of actionable knowledge discovery (AKD for short) has been proposed from the system and microeconomy perspectives. AKD is a closed-loop optimization problem-solving process from problem definition, framework/model design to actionable pattern discovery, and to deliver operationalizable business rules that can be seamlessly associated or integrated with business processes and systems. To support AKD, corresponding methodologies, frameworks and tools have been proposed with case studies in the real world to address critical challenges facing the traditional KDD and. to cater for crucially important factors surrounding real-life AKD.
First, a comprehensive survey and retrospection on the existing data mining methodologies, issues and challenges in actionable knowledge discovery are reviewed.
Second, a practical data mining methodology: domain driven data mining is addressed.
Third, several frameworks have been proposed to support domain driven actionable knowledge discovery.
Fourth, case studies of domain-driven actionable pattern mining in stock markets and social security data are presented to demonstrate the usefulness and potential of the proposed domain driven actionable knowledge discovery.
In summary, this thesis explores in detail how domain driven actionable knowledge discovery can be effectively and efficiently applied to the discovery and delivery of knowledge satisfying both technical and business concerns as well as to support smart decision-making in the real world. The issues and techniques addressed in this thesis have potential to promote the research on critical KDD challenges, and contribute to the paradigm shift from data-centered and technical significance-oriented hidden pattern mining to domain-driven and balanced actionable knowledge discovery. The proposed methodologies and frameworks are flexible, general and effective to be expanded and applied to mining real-life complex data for actionable knowledge.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer