Abstract

This study aimed to develop a prognostic risk model based on immune-related long non-coding RNAs (lncRNAs). By analyzing the expression profiles of specific long non-coding RNAs, the objective was to construct a predictive model to accurately assess the survival prognosis of breast cancer (BC) patients. This effort seeks to provide personalized treatment strategies for patients and improve clinical outcomes. Based on the median risk value, 300 samples of triple-negative BC (TNBC) patients were rolled into a high-risk group (HR group, n = 140) and a low-risk group (LR group, n = 160). Multivariate Cox (MVC) analysis was performed by combining the patient risk score and clinical information to evaluate the prognostic value of the prognostic risk (PR) model. A total of 371 immune-related lncRNAs associated with the prognosis of TNBC were obtained from 300 TNBC samples. Nine associated with prognosis were obtained by univariate Cox (UVC) analysis, and 3 (AC090181.2, LINC01235, and LINC01943) were selected by MVC analysis for the construction of TNBC PR model. Survival analysis showed a great difference in TNBC patients in different groups (P < 0.001). The receiver operator characteristic (ROC) curve showed the model possessed a good area under ROC curve (AUC), which was 0.928. The patient RS jointing with clinical information as well as the MVC analysis revealed that RS was an independent risk factor (IRF) for prognosis of TNBC (P < 0.05, HR = 1.033286). Therefore, the lncRNAs associated with TNBC immunity can be screened by bioinformatics analysis, and the established PR model of TNBC could better predict the prognosis of patients with TNBC, exhibiting a high application value in clinic.

Details

Title
Prognostic risk model under the immune-associated long chain non-coding ribonucleic acid and its application in survival prognosis assessment of patients with breast cancer
Author
Yang, Shuo 1 ; Wang, Qing 1 

 Shaoxing People’s Hospital, Shaoxing City, China (GRID:grid.415644.6) (ISNI:0000 0004 1798 6662) 
Pages
18928
Publication year
2024
Publication date
2024
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3093311643
Copyright
© The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.