1. Introduction
Optimization problems are a kind of problem that have more than one feasible solution. According to this, optimization is the process of obtaining the best optimal solution among all feasible solutions for an optimization problem [1]. From a mathematical point of view, any optimization problem can be modeled using three parts: decision variables, constraints, and the objective function of the problem. The main goal in optimization is to assign values to the decision variables so that the objective function is optimized by respecting the constraints of the problem [2]. There are numerous optimization problems in science, engineering, mathematics, technology, industry, and real-world applications that must be optimized using appropriate techniques. Problem solving techniques in dealing with optimization problems are classified into two groups: deterministic and stochastic approaches [3]. Deterministic approaches in two classes, gradient-based and non-gradient-based, have effective performance in optimizing convex, linear, continuous, differentiable, and low-dimensional problems [4]. Although, when problems become more complex and especially the dimensions of the problem increase, deterministic approaches are inefficient as they get stuck in local optima [5]. On the other hand, many practical optimization problems have features such as being non-convex, non-linear, discontinuous, non-differentiable, and high dimensions. The disadvantages and ineffectiveness of deterministic approaches in solving practical optimization problems with such characteristics have led researchers to develop stochastic approaches [6].
Metaheuristic algorithms are one of the most effective stochastic approaches for solving optimization problems, which can achieve suitable solutions for optimization problems based on random search in the problem-solving space and the use of random operators and trial and error processes. The optimization process in metaheuristic algorithms is such that the first several candidate solutions are initialized randomly in the problem-solving space under the name of algorithm population. Then, these candidate solutions are improved based on the steps of updating the algorithm population during successive iterations. After the full implementation of the algorithm, the best candidate solution obtained during the algorithm iterations is presented as a solution to the problem [7]. The random search process in the performance of metaheuristic algorithms provides no guarantee to achieving the global optimum, although the solutions obtained from metaheuristic algorithms are acceptable as quasi-optimal because they are close to the global optimum. Achieving more effective solutions closer to the global optimum for optimization problems has been a motivation for researchers to design numerous metaheuristic algorithms [8].
A metaheuristic algorithm, to have an effective search process to achieve a suitable solution for the optimization problem, must be able to search the problem-solving space well at both global and local levels. The goal in global search with the concept of exploration is to comprehensively scan the problem-solving space to avoid getting stuck in local optima and to discover the region containing the main optima. The goal in local search with the concept of exploitation is to scan accurately and with small steps in promising areas in the problem-solving space to achieve better solutions closer to the global optimum. Balancing exploration and exploitation during algorithm iterations and the search process in the problem-solving space is the key point in the success of the metaheuristic algorithm in addition to having a high ability in exploration and exploitation [9].
The main research question according to the numerous metaheuristic algorithms that have been designed so far is the following: “is there still a need to introduce new algorithms or not”? In response to this question, the No Free Lunch (NFL) [10] theorem explains that the successful performance of a metaheuristic algorithm in solving a set of optimization problems is no guarantee that the same algorithm will provide the same performance in solving other optimization problems. Based on the NFL theorem, it cannot be claimed that a particular metaheuristic algorithm is the best optimizer for all optimization applications. This means that a successful algorithm in solving one optimization problem may fail in solving another problem by getting stuck in a local optimum. Hence, there is no assumption of success or failure of implementing a metaheuristic algorithm on an optimization problem. The NFL theorem, by keeping the studies of metaheuristic algorithms active, motivates researchers to provide more effective solutions to optimization problems by designing new metaheuristic algorithms.
The innovation and novelty of this paper is in introducing a new metaheuristic algorithm called the Pufferfish Optimization Algorithm (POA) to solve optimization problems in different sciences. The scientific contributions of this study are as follows:
POA is designed based on simulating the natural behavior of pufferfish and its predators in the sea.
The basic inspiration of POA is taken from the defense mechanism of pufferfish against predator attacks.
The theory of POA is stated and its implementation steps are mathematically modeled in two phases: (i) exploration based on the simulation of the predator’s attack on the pufferfish and (ii) exploitation based on the simulation of the pufferfish’s defense mechanism against the predator.
The performance of POA is evaluated to optimize the CEC 2017 test suite for problem dimensions of 10, 30, 50, and 100.
The effectiveness of POA in handling optimization tasks is evaluated on twenty-two constrained optimization problems from the CEC 2011 test suite and four engineering design problems.
Results obtained from POA are compared with the performance of twelve well-known metaheuristic algorithms.
The structure of the paper is as follows: The literature review is presented in Section 2. Then, the proposed Pufferfish Optimization Algorithm is introduced and modeled in Section 3. Simulation studies and results are presented in Section 4. The effectiveness of POA in solving real-world applications is investigated in Section 5. Conclusions and suggestions for future research are provided in Section 6.
2. Literature Review
Metaheuristic algorithms have been developed by taking inspiration from various natural phenomena, lifestyles of living organisms, concepts in biological, genetics, physics sciences, rules of games, human interactions, and other evolutionary phenomena. According to the employed inspiration source in the design, metaheuristic algorithms are placed in five groups: swarm-based, evolutionary-based, physics-based, human-based, and game-based approaches.
Swarm-based metaheuristic algorithms are developed with inspiration from the natural behavior and strategies of animals, insects, birds, reptiles, aquatics, and other living creatures in the wild. Particle Swarm Optimization (PSO) [11], Ant Colony Optimization (ACO) [12], Artificial Bee Colony (ABC) [13], and Firefly Algorithm (FA) [14] are among the most well-known swarm-based metaheuristic algorithms. PSO is designed based on modeling the movement of flocks of birds and swarms of fish that are searching for food. ACO is proposed based on modeling the ability of ants to explore the shortest communication path between the food source and the colony. ABC is introduced based on the modeling of the hierarchical activities of honeybees in an attempt to reach new food sources. FA is designed with inspiration from optical communication between fireflies. Pelican Optimization (PO) is another swarm-based metaheuristic algorithm, that is inspired by the strategy of pelicans during hunting [15]. Among the natural behavior of living organisms in the wild, the processes of hunting, foraging, chasing, digging, and migration are much more prominent and have been a source of inspiration in the design of swarm-based metaheuristic algorithms such as the Snake Optimizer (SO) [16], Sea Lion Optimization (SLnO) [17], Flying Foxes Optimization (FFO) [18], Mayfly Algorithm (MA) [19], White Shark Optimizer (WSO) [20], African Vultures Optimization Algorithm (AVOA) [21], Grey Wolf Optimizer (GWO) [22], Reptile Search Algorithm (RSA) [23], Whale Optimization Algorithm (WOA) [24], Golden Jackal Optimization (GJO) [25], Honey Badger Algorithm (HBA) [26], Marine Predator Algorithm (MPA) [27], Orca Predation Algorithm (OPA) [28], and Tunicate Swarm Algorithm (TSA) [29].
Evolutionary-based metaheuristic algorithms are developed with inspiration from the concepts of biology and genetics, natural selection, survival of the fittest, and Darwin’s evolutionary theory. The Genetic Algorithm (GA) [30] and Differential Evolution (DE) [31] are the most well-known algorithms of this group, whose design is inspired by the reproduction process, genetic concepts, and the use of random mutation, selection, and crossover operators. The Artificial Immune System (AIS) is introduced based on the simulation of the mechanism of the body’s defense system against diseases and microbes [32]. Some other evolutionary-based metaheuristic algorithms are the Cultural Algorithm (CA) [33], Genetic Programming (GP) [34], and Evolution Strategy (ES) [35].
Physics-based metaheuristic algorithms are developed with inspiration from laws, transformations, processes, phenomena, forces, and other concepts in physics. Simulated Annealing (SA) is one of the most well-known physics-based metaheuristic algorithms, which is developed based on the modeling of the metal annealing phenomenon. In this process, with the aim of achieving an ideal crystal, metals are first melted under heat, then slowly cooled [36]. Physical forces and Newton’s laws of motion have been fundamental inspirations in designing algorithms such as the Gravitational Search Algorithm (GSA) based on gravitational attraction force [37], the Momentum Search Algorithm (MSA) [38] based on momentum force, and the Spring Search Algorithm (SSA) [39] based on the elastic force of a spring. The Water Cycle Algorithm (WCA) is proposed based on the modeling of physical transformations in the natural water cycle [40]. Some other physics-based metaheuristic algorithms are Fick’s Law Algorithm (FLA) [41], Prism Refraction Search (PRS) [42], Henry Gas Optimization (HGO) [43], Black Hole Algorithm (BHA) [44], Nuclear Reaction Optimization (NRO) [45], Equilibrium Optimizer (EO) [46], Multi-Verse Optimizer (MVO) [47], Lichtenberg Algorithm (LA) [48], Archimedes Optimization Algorithm (AOA) [49], Thermal Exchange Optimization (TEO) [50], and Electro-Magnetism Optimization (EMO) [51].
Human-based metaheuristic algorithms are developed with inspiration from the thoughts, choices, decisions, interactions, communications, and other activities of humans in society or personal life. The Teaching–Learning-Based Optimization (TLBO) is one of the most widely used human-based metaheuristic algorithms, whose design is inspired by educational communication and knowledge exchange between teachers and students, as well as students with each other [52]. The Mother Optimization Algorithm (MOA) is introduced with inspiration from Eshrat’s care of her children [6]. The Election-Based Optimization Algorithm (EBOA) is proposed based on modeling the process of voting and holding elections in society [8]. The Chef-Based Optimization Algorithm (CHBO) is designed based on the simulation of teaching cooking skills by chefs to applicants in culinary schools [53]. The Teamwork Optimization Algorithm (TOA) is developed with the inspiration of collaboration among team members in providing teamwork in order to achieve specified team goals [54]. Some other human-based metaheuristic algorithms are Driving Training-Based Optimization (DTBO) [5], War Strategy Optimization (WSO) [55], Ali Baba and the Forty Thieves (AFT) [56], Gaining Sharing Knowledge-based Algorithm (GSK) [57], and Coronavirus Herd Immunity Optimizer (CHIO) [58].
Game-based metaheuristic algorithms are developed by taking inspiration from the rules of games as well as the behavior of players, coaches, referees, and other influential people in individual and team games. The Darts Game Optimizer (DGO) is one of the most well-known algorithms of this group, which is proposed based on modeling the competition of players in throwing darts and collecting more points in order to win the game [59]. The Golf Optimization Algorithm (GOA) is introduced based on the simulation of players hitting the ball in order to place the ball in the holes [60]. The Puzzle Algorithm (PA) is designed based on modeling the strategy of players putting puzzle pieces together in order to complete it according to the pattern [61]. Some other game-based metaheuristic algorithms are Volleyball Premier League (VPL) [62], Running City Game Optimizer (RCGO) [63], and Tug of War Optimization (TWO) [64].
Based on the best knowledge obtained from the literature review, no metaheuristic algorithm inspired by the natural behavior of pufferfish in the wild has been introduced so far. Meanwhile, the attack of the hungry predator on the pufferfish and the defense mechanism of the pufferfish against the attacks of the predators are intelligent processes that can be the basis for the design of a new optimizer. To address this research gap in the studies of metaheuristic algorithms, a new bio-inspired metaheuristic algorithm, based on the modeling of natural behavior between pufferfish and their predators, has been designed and is described in the next section.
3. Pufferfish Optimization Algorithm
In this section, the inspiration source in the design of the proposed Pufferfish Optimization Algorithm approach is stated first, then its implementation steps are mathematically modeled to be used to solve optimization problems.
3.1. Inspiration of POA
Pufferfish are a primarily marine and estuarine fish of the family Tetraodontidae and order Tetraodontiformes. This fish is morphologically similar to porcupinefish that have large spines. The body size of pufferfish is small to medium and their maximum length has been observed up to 50 cm [65]. Their beak-like four teeth are one of the most characteristic features of pufferfish. The lack of pectoral fins, pelvis, and ribs are also unique to pufferfish. The significantly lost fin and bone features of the pufferfish are due to the fish’s specialized defense mechanism, which extends by sucking water through the mouth cavity [66]. An image of the pufferfish is shown in Figure 1.
Pufferfish have a very slow movement, which makes them an easy target for predators. The pufferfish’s specialized defense mechanism against predator attacks is to fill its elastic stomach with water until it becomes a large, spherical, spiny ball. The pointed spines of pufferfish make the hungry predator face a ball of pointed spines instead of an easy meal. Predators, after encountering this warning, realize the danger and move away from the pufferfish [66].
Among the natural behaviors of pufferfish, conflicts between this fish and predators and the use of the defense mechanism of turning into a ball of pointed spines against the attacks of predators are much more significant. The modeling of these natural processes, which consists of (i) a predator’s attack on pufferfish and (ii) a pufferfish’s defense mechanism against predator attacks, is employed in the design of the proposed POA approach discussed below.
3.2. Algorithm Initialization
The proposed POA approach is a population-based technique that can achieve effective solutions for optimization problems by using its population search power in the problem-solving space in an iteration-based process. Each POA member determines the values for the decision variables of the problem according to its position in the search space. Therefore, each POA member is a candidate solution to the problem that can be modeled from a mathematical point of view using a vector, where each element of this vector corresponds to a decision variable. POA members together form the population of the algorithm. From a mathematical point of view, the community of these vectors can be modeled using a matrix according to Equation (1). The primary position of each POA member at the beginning of the algorithm is initialized using Equation (2).
(1)
(2)
Here, is the POA population matrix, is the th POA member (candidate solution), is its th dimension in the search space (decision variable), is the number of population members, is the number of decision variables, is a random number in the interval , and and are the lower bound and upper bound of the th decision variable, respectively.
With each POA member as a candidate solution for the problem, the objective function of the problem can be evaluated. The set of evaluated values for the objective function of the problem can be represented using a vector according to Equation (3).
(3)
Here, is the vector of the evaluated objective function and is the evaluated objective function based on the th POA member.
The evaluated values for the objective function are suitable criteria to measure the quality of candidate solutions proposed by each POA member. The best evaluated value for the objective function corresponds to the best member (i.e., the best candidate solution) and the worst evaluated value for the objective function corresponds to the worst member (i.e., the worst candidate solution). Considering that the position of POA members in the problem-solving space is updated in each iteration, the best member should also be updated in each iteration based on the comparison of new evaluated values for the objective function.
3.3. Mathematical Modelling of POA
In the design of the proposed POA approach, the position of population members in the problem-solving space is updated based on the simulation of natural behaviors between pufferfish and its predators. In this natural process, the predator first attacks the pufferfish. Then, the pufferfish uses its defense mechanism and turns into a ball of pointed spines, leading to the threat and escape of the predator. Therefore, in each iteration, the position of POA population members is updated in two phases: (i) exploration based on the simulation of the predator’s attack towards the pufferfish and (ii) exploitation based on the simulation of the defense mechanism of the pufferfish against the predator.
3.3.1. Phase 1: Predator Attack towards Pufferfish (Exploration Phase)
In the first phase of POA, the position of the population members is updated based on the simulation of the predator attack strategy towards the pufferfish. Because of its slow speed, pufferfish are easy prey for hungry hunters. The position change of the predator during the attack towards the pufferfish is simulated to update the position of the POA members in the problem-solving space. Modeling the movement of the predator towards the pufferfish leads to extensive changes in the position of the POA members and as a result increases the exploration power of the algorithm for global search.
In POA design for each population member as a predator, the position of other population members that have a better value for the objective function is considered as the position of the candidate pufferfish for attack. The set of pufferfish for each population member is identified using Equation (4).
(4)
Here, is the set of candidate pufferfish locations for the th predator, is the population member with a better objective function value than the th predator, and is its objective function value.
In the design of POA, it is assumed that among the candidate pufferfish determined in the set, the predator selects a pufferfish completely randomly, which is considered as the selected pufferfish (). Based on the modeling of the movement of the predator towards the pufferfish, a new position in the problem-solving space is calculated for each POA member using Equation (5). Then, if the objective function value is improved in the new position, this new position replaces the previous position of the corresponding member according to Equation (6).
(5)
(6)
Here, is the selected pufferfish for the th predator selected randomly from the set (i.e., is an element of the set), is its th dimension, is the new position calculated for the th predator based on first phase of the proposed POA, is its th dimension, is its objective function value, are random numbers from the interval , and are numbers which are randomly selected as 1 or 2.
3.3.2. Phase 2: Defense Mechanism of Pufferfish against Predators (Exploitation Phase)
In the second phase of POA, the position of population members is updated based on the simulation of a pufferfish’s defense mechanism against predator attacks. When a pufferfish is attacked by a predator, it turns into a ball of pointed spines by filling its very elastic stomach with water. In this situation, the predator who faced such a warning instead of an easy meal runs away from the position of the pufferfish. Modeling the predator moving away from the pufferfish leads to small changes in the position of the POA members and as a result increases the exploitation power of the algorithm for local search.
Based on the modeling of the predator’s position change when moving away from the predator, a new position is calculated for each POA member using Equation (7). Then, this new position, if it improves the value of the objective function, replaces the corresponding member according to Equation (8).
The reason for using Equation (8) is that in POA design, effort has been made to improve the algorithm. In fact, when a new position is calculated for the POA member, it is checked from a comparison of the objective function values whether this new position for the corresponding member leads to a better solution to the problem or not. If the answer is positive, the new position is acceptable for the corresponding POA member, otherwise the new position is inappropriate (because it leads to a weaker solution) and the corresponding member remains in the previous position. Therefore, Equation (8) shows that the update process for each POA member is conditional on improving the value of the objective function.
(7)
(8)
Here, is the new position calculated for the th predator based on the second phase of the proposed POA, is its th dimension, is its objective function value, are random numbers from the interval , and is the iteration counter.
3.4. Repetition Process, Pseudocode, and Flowchart of POA
By updating the position of all POA members based on the exploration and exploitation phases, the first iteration of the algorithm is completed. After that, the algorithm enters the next iteration and the process of updating the position of POA members continues using Equations (4) through (8) until the last iteration of the algorithm. In each iteration, the position of the best POA member is updated and stored based on the comparison of the evaluated values for the objective function. At the end of the full implementation of the algorithm, the position of the best POA member is presented as a solution to the problem. The implementation steps of POA are shown as a flowchart in Figure 2 and its pseudocode is presented in Algorithm 1.
Algorithm 1. Pseudocode of POA. | ||||
Start POA. | ||||
1: | Input problem information: variables, objective function, and constraints. | |||
2: | Set POA population size (N) and iterations (T). | |||
3: | Generate the initial population matrix at random using Equation (2). . | |||
4: | Evaluate the objective function. | |||
5: | For to T | |||
6: | For to | |||
7: | Phase 1: Predator attack towards pufferfish (exploration phase). | |||
8: | Determine the candidate pufferfish set for the ith POA member using Equation (4). . | |||
9: | Select the target pufferfish for the ith POA member at random. | |||
10: | Calculate new position of ith POA member using Equation (5). . | |||
11: | Update ith POA member using Equation (6). | |||
12: | Phase 2: Defense mechanism of pufferfish against predators (exploitation phase). | |||
13: | Calculate new position of ith POA member using Equation (7). . | |||
14: | Update ith POA member using Equation (8). | |||
15: | end | |||
16: | Save the best candidate solution so far. | |||
17: | end | |||
18: | Output the best quasi-optimal solution obtained with the POA. | |||
End POA. |
3.5. POA for Handling the Constrained Problems
Many practical optimization problems are constrained problems that can be solved using metaheuristic algorithms. To apply POA in this type of optimization problem, two strategies have been considered: (i) replacing the inappropriate solution with a feasible solution that is randomly generated with respect to the constraints and (ii) using the penalty coefficient.
In the first case, when the constraints of the problem are not met after updating a solution, this solution is completely removed from the algorithm population and a new feasible solution is generated randomly and replaces that inappropriate solution.
In the second case, in the case of an inappropriate solution that does not meet the constraints of the problem, the objective function corresponding to that inappropriate solution is added with a penalty amount, and as a result, this solution is automatically recognized by the algorithm as a non-optimal solution.
3.6. Computational Complexity of POA
In this subsection, the computational complexity of the proposed POA approach is analyzed. The preparation and initialization steps of POA have a computational complexity equal to O(Nm), where N is the number of POA population members and m is the number of decision variables of the problem. In POA design, in each iteration, the position of population members is updated in two phases. Therefore, the POA update process has a computational complexity equal to O(2NmT), where T is the maximum number of iterations of the algorithm. According to this, the total computational complexity of the proposed POA approach is equal to O(Nm(1 + 2T)). If fixed numbers are ignored, the computational complexity of POA can be deduced to be O(NmT).
4. Simulation Studies and Results
In this section, the performance of the proposed POA approach to solve optimization problems is evaluated. In this regard, POA is implemented to handle the CEC 2017 test suite for problem dimensions equal to 10, 30, 50, and 100.
4.1. Performance Comparison
The performance quality of POA in solving optimization problems has been compared with the performance of twelve well-known metaheuristic algorithms: GA [30], PSO [11], GSA [37], TLBO [52], MVO [47], GWO [22], WOA [24], MPA [27], TSA [29], RSA [23], AVOA [21], and WSO [20]. The values of the control parameters of the metaheuristic algorithms are given in Table 1. Simulations are implemented in the software MATLAB R2022a using a 64-bit Core i7 processor with 3.20 GHz and 16 GB main memory. The implementation results of the metaheuristic algorithms on the benchmark functions are reported with six statistical indicators: mean, best, worst, standard deviation (std), median, and rank. The values obtained for the mean index have been used as criteria in the ranking of metaheuristic algorithms in handling each of the benchmark functions.
4.2. Evaluation CEC 2017 Test Suite
In this subsection, the performance of POA and competitor algorithms in handling the CEC 2017 test suite is evaluated. The CEC 2017 test suite has thirty standard benchmark functions consisting of (i) three unimodal functions of C17-F1 to C17-F3, (ii) seven multimodal functions of C17-F4 to C17-F10, (iii) ten hybrid functions of C17-F11 to C17-F20, and (iv) ten composition functions of C17-F21 to C17-F30. Among these functions, C17-F2 is excluded from the simulation calculations due to its unstable behavior. A full description, details, and more information about the CEC 2017 test suite is available in [67].
The results of employing POA and competitor algorithms to optimize the CEC 2017 test suite are reported in Table 2, Table 3, Table 4 and Table 5. The boxplot diagrams resulting from the performance of metaheuristic algorithms are plotted in Figure 3, Figure 4, Figure 5 and Figure 6. What is evident from the optimization results, in handling the CEC 2017 test suite for the problem dimension equal to 10 (m = 10), is that POA is the first best optimizer for the following functions: C17-F1, C17-F3 to C17-F21, C17-F23, C17-F24, and C17-F27 to C17-F30. For the problem dimension equal to 30 (m = 30), the proposed POA approach is the first best optimizer for the following functions: C17-F1, C17-F3 to C17-F22, C17-F24, C17-F25, and C17-F27 to C17-F30. For the problem dimension equal to 50 (m = 50), the proposed POA approach is the first best optimizer for the following functions: C17-F1, C17-F3 to C17-F25, and C17-F27 to C17-F30. For the problem dimension equal to 100 (m = 100), the proposed POA approach is the first best optimizer for the following functions: C17-F1 and C17-F3 to C17-F30.
Based on the optimization results, POA has been able to achieve effective solutions for the benchmark functions with a high ability in exploration, exploitation, and the balance between them during the search process in the problem-solving space. Simulation results show that the proposed POA approach, by providing better results in most of the benchmark functions and getting the rank of the first best optimizer, has provided superior performance compared to competitor algorithms in order to handle the CEC 2017 test suite for problem dimensions equal to 10, 30, 50, and 100.
As described, the CEC 2017 test suite consists of thirty standard benchmark functions of various types. The unimodal functions C17-F1 and C17-F3 have only one global optimal solution without having any local optimum solutions. For this reason, unimodal functions are suitable criteria to evaluate the exploitation ability of metaheuristic algorithms. The findings obtained from the simulation results show that the proposed POA approach has a higher ability in exploitation for local search management by providing better results compared to competing algorithms. Multimodal functions C17-F4 to C17-F10 have several local optimal solutions in addition to the global optimum. For this reason, multimodal functions challenge the ability of metaheuristic algorithms in exploration and global search. The simulation findings of the performance of metaheuristic algorithms on functions C17-F4 to C17-F10 show that the proposed POA approach with a high exploration ability to manage the global search in the problem-solving space has provided superior performance compared to competing algorithms.
Hybrid functions C17-F11 to C17-F20 and composition functions C17-F21 to C17-F30 are suitable criteria for evaluating the ability of metaheuristic algorithms to balance exploration and exploitation during the search process in the problem-solving space. The simulation results of functions C17-F11 to C17-F30 show that the proposed POA approach with its high ability in balancing exploration and exploitation has been able to provide superior performance compared to competing algorithms. The findings obtained from the performance of the proposed POA approach and competing algorithms on the CEC 2017 test suite for problem dimensions equal to 10, 30, 50, and 100 confirm that POA has a higher ability in exploration, exploitation, and balancing them during the search process compared to competing algorithms.
The analysis of the boxplot diagrams intuitively shows that POA has been able to provide better solutions in most of the benchmark functions compared to competing algorithms. Comparing the height of the boxplot charts provides appropriate information about the standard deviation. Examining this issue shows how the results were scattered in independent performances. Therefore, what can be concluded from the intuitive analysis of the boxplot diagrams is that POA has provided better results and lower standard deviation in most of the benchmark functions, compared to competing algorithms, in handling the CEC 2017 test suite.
4.3. Statistical Analysis
In this subsection, using statistical analysis on the results obtained from metaheuristic algorithms, it has been checked whether the superiority of POA against competitor algorithms is significant from a statistical point of view. For this purpose, the Wilcoxon rank sum test [68] is employed, which is a non-parametric statistical test and is used to determine the significant difference between the means of two data samples. In this test, the presence or absence of a significant difference is determined using a criterion called the p-value.
The implementation results of the Wilcoxon rank sum test on the performance of POA against each of the competitor algorithms in dealing with the CEC 2017 test suite are reported in Table 6. Based on the results of the statistical analysis, in cases where the p-value is calculated to be less than 0.05, POA has a significant statistical superiority over the competitor algorithm. Therefore, POA has a significant statistical superiority in handling the CEC 2017 test suite for problem dimensions equal to 10, 30, 50, and 100 compared to all twelve competitor algorithms.
5. POA for Real-World Applications
In this section, the performance of the proposed POA approach in handling optimization tasks in real-world applications is evaluated. For this purpose, twenty-two constrained optimization problems from the CEC 2011 test suite and four engineering design problems are selected. The titles of these real-world applications are parameter estimation for frequency-modulated (FM) sound waves, Lennard-Jones potential problem, the bifunctional catalyst blend optimal control problem, optimal control of a non-linear stirred tank reactor, tersoff potential for model Si (B), tersoff potential for model Si (C), spread spectrum radar polly phase code design, transmission network expansion planning (TNEP) problem, large scale transmission pricing problem, circular antenna array design problem, the ELD problems (consisting of DED instance 1, DED instance 2, ELD instance 1, ELD instance 2, ELD instance 3, ELD instance 4, ELD instance 5, hydrothermal scheduling instance 1, hydrothermal scheduling instance 2, hydrothermal scheduling instance 3), messenger: spacecraft trajectory optimization problem, and cassini 2: spacecraft trajectory optimization problem. From this set, the C11-F3 function has been removed in the simulation studies from the CEC 2011 test suite, as well as four engineering design problems of pressure vessel design, speed reducer design, welded beam design, and tension/compression spring design.
5.1. Evaluation of CEC 2011 Test Suite
In this subsection, the performance of POA and competitor algorithms in handling the CEC 2011 test suite is evaluated. The CEC 2011 test suite contains twenty-two constrained optimization problems from real-world applications (Appendix A). A full description, details, and information about the CEC 2011 test suite are available in [69].
The optimization results of the CEC 2011 test suite using POA and competitor algorithms are reported in Table 7. The boxplot diagrams obtained from the performance of metaheuristic algorithms are plotted in Figure 7. The optimization results show that POA, with its high ability in exploration, exploitation, and balancing them, has been able to achieve effective results for optimization problems and be the first best optimizer for problems C11-F1 to C11-F22. What can be concluded from the simulation results is that POA has provided superior performance by providing better results in most of the optimization problems and getting the rank of the first best optimizer to deal with the CEC 2011 test suite compared to competitor algorithms. In addition, the statistical results obtained from the Wilcoxon rank sum test confirm that POA has significant statistical superiority compared to competitor algorithms.
5.2. Pressure Vessel Design Problem
Pressure vessel design is a real-world application with the issue of minimizing construction cost. The schematic of this design is shown in Figure 8 and its mathematical model is given below [70]:
Consider: .
Minimize:
Subject to:
With
The results of the implementation of POA and competitor algorithms on the pressure vessel design problem are reported in Table 8 and Table 9. The convergence curve of POA while achieving the optimal design is plotted in Figure 9. Based on the obtained results, POA has provided the optimal design with the values of the design variables equal to 0.7780271, 0.3845792, 40.312284, and 200 and the value of the objective function equal to 5882.8955. Simulation results show that POA has provided superior performance by achieving better results to optimize the pressure vessel design problem compared to competitor algorithms.
5.3. Speed Reducer Design Problem
Speed reducer design is a real-world application with the issue of minimizing the weight of the speed reducer. Schematic of this design is shown in Figure 10 and its mathematical model is given below [71,72]:
Consider:.
Minimize:.
Subject to:
With
The results of employing POA and competitor algorithms on the speed reducer design problem are presented in Table 10 and Table 11. The convergence curve of POA while achieving the optimal design for the speed reducer problem is drawn in Figure 11. Based on the obtained results, POA has provided the optimal design with the values of the design variables equal to 3.5, 0.7, 17, 7.3, 7.8, 3.3502147, and 5.2866832 and the value of the objective function equal to 2996.3482. What is evident from the analysis of simulation results is that POA has provided superior performance by achieving better results to solve the speed reducer design problem compared to competitor algorithms.
5.4. Welded Beam Design
Welded beam design is a real-world application with the issue of minimizing the fabrication cost of the welded beam. The schematic of this design is shown in Figure 12 and its mathematical model is given below [24]:
Consider: .
Minimize: .
Subject to:
whereWith
The results of dealing with the welded beam design problem using POA and competitor algorithms are reported in Table 12 and Table 13. The POA convergence curve while achieving the optimal design for the welded beam problem is plotted in Figure 13. Based on the obtained results, POA has provided the optimal design with the values of the design variables equal to 0.2057296, 3.4704887, 9.0366239, and 0.2057296 and the value of the objective function equal to 1.7246798. Analysis of the simulation results shows that POA provides superior performance for solving the welded beam design problem by achieving better results compared to competitor algorithms.
5.5. Tension/Compression Spring Design
Tension/compression spring design is a real-world application with the issue of minimizing construction cost. The schematic of this design is shown in Figure 14 and its mathematical model is given below [24]:
Consider:
Minimize:
Subject to:
With
The optimization results of the tension/compression spring design problem using POA and competitor algorithms are reported in Table 14 and Table 15. The convergence curve of POA while achieving the optimal design for the tension/compression spring problem is drawn in Figure 15. Based on the obtained results, POA has provided the optimal design with the values of the design variables equal to 0.0516891, 0.3567177, and 11.288966 and the value of the objective function equal to 0.0126019. What can be concluded from the simulation results is that POA provides superior performance by achieving better results in order to deal with the tension/compression spring design problem compared to competitor algorithms.
6. Conclusions and Future Works
A new bio-inspired metaheuristic algorithm, called the Pufferfish Optimization Algorithm (POA), which imitates the natural behavior between pufferfish and their predators in the sea, is introduced in this paper. The fundamental inspiration for POA is derived from the attacks of hungry predators on pufferfish and the defense mechanism of pufferfish against these attacks. The theory of POA is described and mathematically modeled in two phases, (i) exploration based on the simulation of the predator attack on pufferfish and (ii) exploitation based on the simulation of the escape of the predator from the spiny spherical pufferfish. The performance of POA is evaluated in handling the CEC 2017 test suite for problem dimensions equal to 10, 30, 50, and 100. The optimization results show that POA has a high ability in exploration, exploitation, and the balance between them during the search process to provide effective solutions. To measure the ability of POA in optimization, the obtained results are compared with the performance of twelve well-known metaheuristic algorithms. Simulation results show that POA provides superior performance compared to competitor algorithms by achieving better results for most of the benchmark functions. The use of the Wilcoxon rank sum test statistical analysis confirmed that this superiority of POA is also significant from a statistical point of view. In addition, the effectiveness of POA in handling real-world applications was challenged in handling twenty-two constrained optimization problems from the CEC 2011 test suite and four engineering design problems. The optimization results show that POA offers effective performance to handle optimization tasks in real-world applications.
Based on the simulation results, in handling the CEC 2017 test suite for the problem dimension equal to 10, the proposed POA approach had the best performance in 24/29 functions, i.e., 82.75%. For the problem dimension equal to 30, POA was successful in 27/29 functions, i.e., 93.10%. For the problem dimension equal to 50, POA performed best in 28/29 functions, i.e., 96.55%. For the problem dimension equal to 100, POA performed best in 29/29 functions, i.e., 100%. Also, the proposed POA approach in dealing with real-world applications consisting of the CEC 2011 test suite and four engineering design problems presented the best performance in 26/26 optimization problems, i.e., 100%.
The proposed POA approach has several advantages for global optimization problems. The first advantage of POA is that there is no control parameter in the design of this algorithm. Therefore, there is no need to control the parameters in any way. The second advantage of POA is its high effective efficiency in dealing with a variety of optimization problems in various sciences as well as complex high-dimensional problems. The third advantage of the proposed POA method is that it shows its great ability to balance exploration and exploitation in the search process, which allows it to have high-speed convergence to provide suitable values for the decision variables in optimization tasks, especially in complex problems. The fourth advantage of the proposed POA is its powerful performance in handling real-world optimization applications. However, there are several disadvantages and limitations regarding POA. The first one is that because POA is a stochastic approach, there is no guarantee to achieve the global optimum using the proposed POA approach. The second disadvantage of POA is that based on the NFL theorem, there is no assumption about the success or failure of its implementation on an optimization problem. The third disadvantage is that there is always the possibility that newer metaheuristic algorithms will be designed that perform better compared to POA.
The introduction of POA enables several research proposals for future work. The most special of these research proposals is the development of multi-objective and binary versions of the proposed POA approach. Also, the employment of POA to deal with optimization issues in different sciences and real-world applications is one of the other research proposals of this study for future work.
Conceptualization, O.A.-B., M.D. and Z.M.; methodology, S.A., O.A., M.D., Z.M., U.D. and S.G.; software, O.A.-B., S.A., M.D., O.P.M. and S.G.; validation, O.A., I.L., O.P.M., S.G. and Z.M.; formal analysis, M.D., O.A.-B., O.P.M. and I.L.; investigation, I.L. and Z.M.; resources, U.D. and S.G.; data curation, S.A., U.D., M.D. and Z.M.; writing—original draft preparation, M.D., Z.M., S.A., O.A.-B. and U.D.; writing—review and editing, S.A., O.A., O.P.M., I.L. and S.G.; visualization, O.A., U.D., S.G., I.L. and O.P.M.; supervision, M.D. and O.A.-B.; project administration, O.A., U.D, Z.M. and O.P.M.; funding acquisition, O.P.M. All authors have read and agreed to the published version of the manuscript.
Not applicable.
Data are contained within the article.
Financial support of NSERC Canada through a research grant is acknowledged.
The authors declare no conflicts of interest.
Footnotes
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Figure 3. Boxplot diagrams of POA and competitor algorithms’ performances on CEC 2017 test suite (dimension = 10).
Figure 3. Boxplot diagrams of POA and competitor algorithms’ performances on CEC 2017 test suite (dimension = 10).
Figure 4. Boxplot diagrams of POA and competitor algorithms’ performances on CEC 2017 test suite (dimension = 30).
Figure 4. Boxplot diagrams of POA and competitor algorithms’ performances on CEC 2017 test suite (dimension = 30).
Figure 5. Boxplot diagrams of POA and competitor algorithms’ performances on CEC 2017 test suite (dimension = 50).
Figure 5. Boxplot diagrams of POA and competitor algorithms’ performances on CEC 2017 test suite (dimension = 50).
Figure 6. Boxplot diagrams of POA and competitor algorithms’ performances on CEC 2017 test suite (dimension = 100).
Figure 6. Boxplot diagrams of POA and competitor algorithms’ performances on CEC 2017 test suite (dimension = 100).
Figure 7. Boxplot diagrams of POA and competitor algorithms’ performances on CEC 2011 test suite.
Control parameter values.
Algorithm | Parameter | Value |
---|---|---|
GA | ||
Type | Real coded | |
Selection | Roulette wheel (Proportionate) | |
Crossover | Whole arithmetic (Probability = 0.8, | |
Mutation | Gaussian (Probability = 0.05) | |
PSO | ||
Topology | Fully connected | |
Cognitive and social constant | (C1, C2) | |
Inertia weight | Linear reduction from 0.9 to 0.1 | |
Velocity limit | 10% of dimension range | |
GSA | ||
Alpha, G0, Rnorm, Rpower | 20, 100, 2, 1 | |
TLBO | ||
TF: teaching factor | TF = round | |
random number | rand is a random number between | |
GWO | ||
Convergence parameter (a) | a: Linear reduction from 2 to 0. | |
MVO | ||
Wormhole existence probability (WEP) | Min(WEP) = 0.2 and Max(WEP) = 1. | |
Exploitation accuracy over the iterations (p) | ||
WOA | ||
Convergence parameter (a) | a: Linear reduction from 2 to 0. | |
r is a random vector in | ||
l is a random number in | ||
TSA | ||
Pmin and Pmax | 1, 4 | |
c1, c2, c3 | Random numbers lie in the range of | |
MPA | ||
Constant number | P = 0.5 | |
Random vector | R is a vector of uniform random numbers in | |
Fish Aggregating Devices (FADs) | FADs = 0.2 | |
Binary vector | U = 0 or 1 | |
RSA | ||
Sensitive parameter | | |
Sensitive parameter | | |
Evolutionary Sense (ES) | ES: randomly decreasing values between 2 and −2 | |
AVOA | ||
L1, L2 | 0.8, 0.2 | |
w | 2.5 | |
P1, P2, P3 | 0.6, 0.4, 0.6 | |
WSO | ||
Fmin and Fmax | 0.07, 0.75 | |
τ, ao, a 1 , a 2 | 4.125, 6.25, 100, 0.0005 |
Optimization results of CEC 2017 test suite (dimension = 10); background color has been used in order to make the table more reader-friendly and to separate the results of benchmark functions from each other; The best results are specified using bold.
POA | WSO | AVOA | RSA | MPA | TSA | WOA | MVO | GWO | TLBO | GSA | PSO | GA | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C17-F1 | mean | 100 | 4.55 × 109 | 3225.251 | 8.52 × 109 | 29,456,372 | 1.45 × 109 | 5,384,532 | 6295.129 | 73,640,145 | 1.23 × 108 | 639.77 | 2641.639 | 9,894,286 |
best | 100 | 3.82 × 109 | 113.0384 | 7.37 × 109 | 9369.202 | 3.11 × 108 | 3,920,729 | 4010.164 | 23,221.73 | 54,735,477 | 100.0161 | 305.0863 | 5,123,646 | |
worst | 100 | 5.71 × 109 | 9961.716 | 1.02 × 1010 | 1.07 × 108 | 3.17 × 109 | 7,089,395 | 9268.077 | 2.68 × 108 | 2.96 × 108 | 1510.948 | 7789.605 | 14,204,094 | |
std | 0 | 8.41 × 108 | 4725.098 | 1.29 × 109 | 53,343,077 | 1.31 × 109 | 1,377,344 | 2529.889 | 1.33 × 108 | 1.2 × 108 | 626.9959 | 3559.58 | 3,898,254 | |
median | 100 | 4.34 × 109 | 1413.125 | 8.29 × 109 | 5,399,185 | 1.17 × 109 | 5,264,003 | 5951.137 | 13,496,678 | 70,182,972 | 474.0581 | 1235.933 | 10,124,702 | |
rank | 1 | 12 | 4 | 13 | 8 | 11 | 6 | 5 | 9 | 10 | 2 | 3 | 7 | |
C17-F3 | mean | 300 | 6378.9 | 301.5805 | 8102.009 | 1224.369 | 9399.415 | 1493.376 | 300.0456 | 2610.921 | 655.7709 | 8611.105 | 300 | 12,379.73 |
best | 300 | 3479.574 | 300 | 4391.427 | 710.0549 | 3610.069 | 566.4824 | 300.0106 | 1325.137 | 442.915 | 5437.139 | 300 | 3679.862 | |
worst | 300 | 8532.601 | 303.3805 | 10,823.2 | 2165.316 | 13,268.46 | 2829.352 | 300.1038 | 4963.289 | 794.8168 | 11,686.32 | 300 | 19,538.86 | |
std | 0 | 2278.712 | 1.88337 | 3020.559 | 689.6101 | 4212.539 | 1094.985 | 0.042055 | 1724.025 | 158.4443 | 2647.296 | 4.77 × 10−14 | 8508.885 | |
median | 1.310345 | 10.96552 | 6.103448 | 12.06897 | 3.655172 | 9.862069 | 8.241379 | 4 | 6.482759 | 6.586207 | 8.206897 | 6.310345 | 6.793103 | |
rank | 1 | 9 | 4 | 10 | 6 | 12 | 7 | 3 | 8 | 5 | 11 | 2 | 13 | |
C17-F4 | mean | 400 | 832.9399 | 403.9689 | 1194.33 | 405.6187 | 547.3643 | 421.0073 | 402.7854 | 409.8048 | 407.6604 | 403.8033 | 416.9675 | 412.2951 |
best | 400 | 627.2234 | 401.0368 | 771.6337 | 402.0435 | 465.0221 | 405.381 | 401.3315 | 405.0867 | 407.0049 | 402.975 | 400.0883 | 409.7553 | |
worst | 400 | 1019.23 | 405.4518 | 1608.364 | 409.5054 | 643.505 | 461.4439 | 404.0891 | 423.6902 | 408.0743 | 405.0755 | 458.7854 | 415.4025 | |
std | 0 | 180.4109 | 2.136488 | 366.8366 | 3.780469 | 89.85733 | 27.77266 | 1.472703 | 9.507988 | 0.471 | 0.989405 | 28.92907 | 2.538467 | |
median | 400 | 842.6533 | 404.6935 | 1198.66 | 405.4629 | 540.4651 | 408.6021 | 402.8604 | 405.2212 | 407.7813 | 403.5813 | 404.4981 | 412.0112 | |
rank | 1 | 12 | 4 | 13 | 5 | 11 | 10 | 2 | 7 | 6 | 3 | 9 | 8 | |
C17-F5 | mean | 501.2464 | 552.1378 | 537.357 | 561.6212 | 511.0763 | 554.4922 | 534.7626 | 520.197 | 511.1956 | 528.9305 | 545.6336 | 523.7417 | 523.836 |
best | 500.9951 | 539.7089 | 522.8013 | 549.3927 | 507.3653 | 536.6275 | 519.9448 | 508.7872 | 507.3485 | 524.2608 | 541.4915 | 509.5614 | 519.8255 | |
worst | 501.9917 | 560.5654 | 553.1728 | 574.2389 | 515.3498 | 581.634 | 565.1408 | 532.364 | 517.3034 | 531.87 | 555.5081 | 543.8277 | 528.6581 | |
std | 0.510361 | 9.580768 | 16.32801 | 14.21183 | 4.349562 | 20.50914 | 21.74587 | 10.11023 | 4.390641 | 3.433171 | 6.847497 | 16.20352 | 4.062694 | |
median | 500.9993 | 554.1385 | 536.7271 | 561.4266 | 510.7951 | 549.8536 | 526.9824 | 519.8183 | 510.0652 | 529.7956 | 542.7673 | 520.7889 | 523.4302 | |
rank | 1 | 11 | 9 | 13 | 2 | 12 | 8 | 4 | 3 | 7 | 10 | 5 | 6 | |
C17-F6 | mean | 600 | 627.3309 | 614.6691 | 634.4767 | 601.0111 | 621.0302 | 619.6218 | 601.8208 | 600.9545 | 605.8124 | 614.5724 | 606.2928 | 608.69 |
best | 600 | 623.5055 | 613.8184 | 631.7558 | 600.6021 | 612.7676 | 606.3745 | 600.3998 | 600.5048 | 604.0305 | 602.47 | 601.1473 | 605.8484 | |
worst | 600 | 631.2956 | 616.8301 | 638.0792 | 602.0311 | 634.2348 | 638.2827 | 603.6532 | 601.4559 | 608.5909 | 630.6117 | 616.3121 | 612.2851 | |
std | 0 | 3.472219 | 1.484036 | 2.918649 | 0.700246 | 9.511675 | 13.80004 | 1.501618 | 0.404385 | 2.135493 | 13.37183 | 7.064953 | 2.930533 | |
median | 600 | 627.2613 | 614.0139 | 634.0359 | 600.7057 | 618.5592 | 616.915 | 601.6152 | 600.9287 | 605.3141 | 612.604 | 603.856 | 608.3133 | |
rank | 1 | 12 | 9 | 13 | 3 | 11 | 10 | 4 | 2 | 5 | 8 | 6 | 7 | |
C17-F7 | mean | 711.1267 | 783.4441 | 757.2336 | 790.1017 | 722.5726 | 810.5305 | 754.2906 | 727.8586 | 723.7378 | 745.795 | 716.2033 | 729.4378 | 732.9366 |
best | 710.6726 | 769.04 | 738.836 | 778.8415 | 719.0263 | 776.5166 | 745.0046 | 716.3701 | 716.5132 | 741.9062 | 714.3682 | 723.4728 | 724.2721 | |
worst | 711.7995 | 793.0312 | 780.7714 | 800.7603 | 726.2643 | 845.5942 | 779.3306 | 744.1291 | 738.5278 | 752.6074 | 719.2987 | 739.1632 | 736.7494 | |
std | 0.526035 | 10.46384 | 19.76913 | 10.5544 | 3.115174 | 30.80953 | 17.19406 | 12.0106 | 10.37385 | 4.88509 | 2.205896 | 7.383528 | 6.02182 | |
median | 711.0174 | 785.8527 | 754.6635 | 790.4025 | 722.4998 | 810.0057 | 746.4136 | 725.4676 | 719.955 | 744.3332 | 715.5731 | 727.5577 | 735.3625 | |
rank | 1 | 11 | 10 | 12 | 3 | 13 | 9 | 5 | 4 | 8 | 2 | 6 | 7 | |
C17-F8 | mean | 801.4928 | 840.4137 | 826.6076 | 845.7371 | 810.9673 | 841.1529 | 831.0484 | 810.2577 | 813.6633 | 832.19 | 817.0678 | 819.5292 | 814.4624 |
best | 800.995 | 835.9776 | 817.349 | 836.3057 | 807.6532 | 827.5049 | 815.903 | 806.4482 | 809.0741 | 826.2583 | 810.3401 | 813.4552 | 811.0084 | |
worst | 801.9912 | 845.801 | 839.933 | 850.1049 | 812.8626 | 857.434 | 841.4662 | 814.2402 | 817.8153 | 838.8887 | 823.5791 | 825.0745 | 820.994 | |
std | 0.590448 | 5.260983 | 9.771921 | 6.548268 | 2.434302 | 13.71341 | 11.28228 | 3.284991 | 3.76151 | 6.627541 | 5.787728 | 5.924469 | 4.572311 | |
median | 801.4926 | 839.938 | 824.5741 | 848.2689 | 811.6767 | 839.8363 | 833.4122 | 810.1712 | 813.8819 | 831.8065 | 817.1759 | 819.7935 | 812.9235 | |
rank | 1 | 11 | 8 | 13 | 3 | 12 | 9 | 2 | 4 | 10 | 6 | 7 | 5 | |
C17-F9 | mean | 900 | 1342.665 | 1144.15 | 1380.729 | 904.4051 | 1307.355 | 1302.765 | 900.6792 | 910.1139 | 910.0229 | 900 | 903.5951 | 904.3318 |
best | 900 | 1213.579 | 945.5294 | 1299.548 | 900.2775 | 1127.127 | 1047.555 | 900.0009 | 900.4858 | 906.1292 | 900 | 900.7621 | 902.3713 | |
worst | 900 | 1461.794 | 1545.028 | 1497.235 | 911.3074 | 1551.625 | 1540.964 | 902.6395 | 928.0779 | 916.9536 | 900 | 910.4403 | 907.6936 | |
std | 0 | 110.3068 | 285.318 | 86.45428 | 5.099179 | 188.6618 | 213.3405 | 1.342755 | 13.29542 | 4.886051 | 0 | 4.746802 | 2.472394 | |
median | 900 | 1347.644 | 1043.021 | 1363.067 | 903.0177 | 1275.335 | 1311.271 | 900.0381 | 905.9459 | 908.5044 | 900 | 901.589 | 903.6311 | |
rank | 1 | 11 | 8 | 12 | 5 | 10 | 9 | 2 | 7 | 6 | 1 | 3 | 4 | |
C17-F10 | mean | 1006.179 | 2094.711 | 1653.575 | 2325.702 | 1434.373 | 1867.549 | 1861.168 | 1656.066 | 1609.581 | 1984.581 | 2073.645 | 1794.689 | 1601.404 |
best | 1000.284 | 1844.829 | 1407.465 | 2183.265 | 1329.997 | 1635.581 | 1379.004 | 1382.572 | 1453.891 | 1657.353 | 1839.94 | 1472.001 | 1349.864 | |
worst | 1012.668 | 2216.253 | 2188.593 | 2626.801 | 1496.489 | 2080.065 | 2300.463 | 2076.287 | 1832.601 | 2225.617 | 2161.619 | 2134.667 | 1932.365 | |
std | 6.836865 | 177.0655 | 377.3195 | 212.4787 | 80.45788 | 240.0084 | 458.2015 | 344.9953 | 165.4887 | 248.0571 | 160.3531 | 279.4831 | 256.8364 | |
median | 1005.882 | 2158.882 | 1509.12 | 2246.371 | 1455.502 | 1877.275 | 1882.603 | 1582.703 | 1575.916 | 2027.676 | 2146.51 | 1786.043 | 1561.693 | |
rank | 1 | 12 | 5 | 13 | 2 | 9 | 8 | 6 | 4 | 10 | 11 | 7 | 3 | |
C17-F11 | mean | 1100 | 3052.848 | 1140.664 | 3518.066 | 1122.675 | 4754.993 | 1142.722 | 1123.061 | 1146.339 | 1142.683 | 1132.859 | 1136.493 | 2175.454 |
best | 1100 | 2007.707 | 1114.294 | 1400.652 | 1111.067 | 4630.721 | 1110.865 | 1104.65 | 1118.127 | 1131.718 | 1116.47 | 1127.039 | 1112.613 | |
worst | 1100 | 4072.84 | 1185.335 | 5609.441 | 1149.281 | 4823.178 | 1161.289 | 1141.008 | 1207.627 | 1160.621 | 1157.526 | 1154.514 | 5190.671 | |
std | 0 | 952.1951 | 32.11656 | 1942.817 | 18.53391 | 87.85611 | 23.91512 | 18.65818 | 42.85208 | 12.81477 | 17.99745 | 12.70843 | 2065.104 | |
median | 1100 | 3065.423 | 1131.514 | 3531.087 | 1115.176 | 4783.037 | 1149.367 | 1123.294 | 1129.801 | 1139.198 | 1128.719 | 1132.21 | 1199.267 | |
rank | 1 | 11 | 6 | 12 | 2 | 13 | 8 | 3 | 9 | 7 | 4 | 5 | 10 | |
C17-F12 | mean | 1352.959 | 2.97 × 108 | 925,391.7 | 5.93 × 108 | 477,319.8 | 874,188.8 | 1,979,065 | 865,306 | 1,189,969 | 4,247,558 | 857,970 | 7016.058 | 508,801.4 |
best | 1318.646 | 66,857,398 | 299,477.1 | 1.32 × 108 | 16,909.18 | 453,430 | 144,583.9 | 7633.405 | 38,406.71 | 1,136,852 | 399,108.9 | 2327.135 | 147,522.3 | |
worst | 1438.176 | 5.19 × 108 | 1,678,010 | 1.04 × 109 | 746,882.4 | 1,073,191 | 3,283,074 | 2,717,573 | 1,862,542 | 7,519,307 | 1,450,813 | 11,928.71 | 897,999.2 | |
std | 58.85078 | 2.35 × 108 | 662,257.5 | 4.7 × 108 | 330,296.3 | 300,169.8 | 1,498,477 | 1,285,727 | 825,776.5 | 3,472,325 | 457,249.7 | 4491.941 | 316,505.5 | |
median | 1327.506 | 3.01 × 108 | 862,039.8 | 6.02 × 108 | 572,743.7 | 985,067.2 | 2,244,302 | 368,008.7 | 1,429,464 | 4,167,037 | 790,979.2 | 6904.195 | 494,842 | |
rank | 1 | 12 | 8 | 13 | 3 | 7 | 10 | 6 | 9 | 11 | 5 | 2 | 4 | |
C17-F13 | mean | 1305.324 | 14,453,034 | 15,617.23 | 28,897,755 | 4775.974 | 10,914.64 | 6578.518 | 5863.709 | 8864.918 | 14,267.13 | 8673.501 | 5773.513 | 45,976.95 |
best | 1303.114 | 1,205,133 | 2496.902 | 2,399,357 | 3335.283 | 6585.883 | 2965.887 | 1373.109 | 5677.498 | 13,483.27 | 4451.162 | 2207.669 | 7389.402 | |
worst | 1308.508 | 47,973,526 | 26,610.71 | 95,934,824 | 5794.402 | 17,170.59 | 12,945.79 | 10,613.54 | 12,301.39 | 16,181.02 | 12,131.5 | 14,257.57 | 151,548.5 | |
std | 2.334346 | 23,002,094 | 12,803.89 | 46,001,701 | 1204.556 | 4692.115 | 4672.716 | 4916.238 | 2788.105 | 1323.027 | 3334.195 | 5873.675 | 72,330.17 | |
median | 1304.837 | 4,316,738 | 16,680.66 | 8,628,419 | 4987.106 | 9951.053 | 5201.196 | 5734.095 | 8740.391 | 13,702.11 | 9055.67 | 3314.406 | 12,484.95 | |
rank | 1 | 12 | 10 | 13 | 2 | 8 | 5 | 4 | 7 | 9 | 6 | 3 | 11 | |
C17-F14 | mean | 1400.746 | 3425.125 | 1923.395 | 4721.354 | 1854.633 | 3071.795 | 1500.297 | 1544.788 | 2196.524 | 1560.721 | 4905.279 | 2742.875 | 11,128.99 |
best | 1400 | 2876.326 | 1634.989 | 4160.638 | 1429.482 | 1474.157 | 1469.026 | 1419.609 | 1452.607 | 1497.896 | 4094.539 | 1427.371 | 3357.938 | |
worst | 1400.995 | 4457.139 | 2601.909 | 6025.968 | 2665.305 | 4920.32 | 1533.639 | 1899.666 | 4398.761 | 1586.247 | 6578.375 | 5981.161 | 21,956.75 | |
std | 0.510957 | 743.7893 | 468.0622 | 899.962 | 595.2986 | 1882.86 | 33.93495 | 243.0516 | 1507.96 | 43.22455 | 1195.352 | 2235.262 | 8092.2 | |
median | 1400.995 | 3183.518 | 1728.342 | 4349.405 | 1661.872 | 2946.352 | 1499.262 | 1429.938 | 1467.363 | 1579.371 | 4474.102 | 1781.483 | 9600.644 | |
rank | 1 | 10 | 6 | 11 | 5 | 9 | 2 | 3 | 7 | 4 | 12 | 8 | 13 | |
C17-F15 | mean | 1500.331 | 8823.289 | 4695.909 | 11,912.34 | 3583.354 | 6130.176 | 5470.285 | 1535.266 | 5130.307 | 1676.091 | 20,332.03 | 7808.495 | 4066.484 |
best | 1500.001 | 2966.931 | 1981.77 | 2538.513 | 2950.103 | 2189.717 | 1932.997 | 1521.862 | 3241.986 | 1570.783 | 9684.199 | 2654.209 | 1828.644 | |
worst | 1500.5 | 14,888.97 | 10,862.78 | 25,783.44 | 4354.214 | 10,794.45 | 11,552.87 | 1545.424 | 6043.794 | 1751.572 | 30,396.01 | 12,686.41 | 6981.342 | |
std | 0.241803 | 5273.186 | 4255.399 | 10,424.41 | 598.2652 | 3797.989 | 4306.832 | 10.57788 | 1322.269 | 91.12372 | 10,162.76 | 4306.45 | 2631.154 | |
median | 1500.413 | 8718.629 | 2969.542 | 9663.698 | 3514.55 | 5768.27 | 4197.636 | 1536.889 | 5617.724 | 1691.004 | 20,623.96 | 7946.681 | 3727.975 | |
rank | 1 | 11 | 6 | 12 | 4 | 9 | 8 | 2 | 7 | 3 | 13 | 10 | 5 | |
C17-F16 | mean | 1600.76 | 1939.004 | 1776.431 | 1950.451 | 1670.982 | 1976.428 | 1894.978 | 1782.044 | 1708.223 | 1664.815 | 1998.193 | 1872.397 | 1770.358 |
best | 1600.356 | 1880.829 | 1635.665 | 1784.641 | 1635.301 | 1820.937 | 1738.957 | 1706.622 | 1613.492 | 1642.982 | 1892.192 | 1787.207 | 1699.991 | |
worst | 1601.12 | 2038.394 | 1874.634 | 2180.76 | 1696.723 | 2131.631 | 2002.906 | 1833.931 | 1789.792 | 1710.474 | 2162.104 | 2006.809 | 1796.503 | |
std | 0.32447 | 72.16946 | 103.3883 | 171.8207 | 27.14079 | 144.7973 | 128.8395 | 55.29935 | 74.70755 | 32.32517 | 126.0765 | 104.4724 | 48.224 | |
median | 1600.781 | 1918.398 | 1797.713 | 1918.201 | 1675.953 | 1976.572 | 1919.025 | 1793.812 | 1714.804 | 1652.902 | 1969.237 | 1847.786 | 1792.468 | |
rank | 1 | 10 | 6 | 11 | 3 | 12 | 9 | 7 | 4 | 2 | 13 | 8 | 5 | |
C17-F17 | mean | 1700.099 | 1802.856 | 1742.924 | 1799.64 | 1730.095 | 1786.022 | 1819.437 | 1820.178 | 1757.693 | 1749.156 | 1823.538 | 1744.089 | 1747.136 |
best | 1700.02 | 1788.431 | 1729.01 | 1785.395 | 1718.446 | 1773.277 | 1761.955 | 1766.126 | 1720.64 | 1740.612 | 1740.352 | 1738.531 | 1744.49 | |
worst | 1700.332 | 1808.997 | 1779.963 | 1807.391 | 1763.055 | 1795.177 | 1859.36 | 1910.802 | 1844.423 | 1757.517 | 1929.847 | 1749.707 | 1749.175 | |
std | 0.159367 | 9.935453 | 25.42708 | 10.05161 | 22.58051 | 9.661591 | 43.46574 | 70.36918 | 59.68794 | 8.584843 | 99.23511 | 4.911284 | 2.168843 | |
median | 1700.022 | 1806.997 | 1731.362 | 1802.888 | 1719.44 | 1787.818 | 1828.216 | 1801.892 | 1732.855 | 1749.248 | 1811.976 | 1744.06 | 1747.44 | |
rank | 1 | 10 | 3 | 9 | 2 | 8 | 11 | 12 | 7 | 6 | 13 | 4 | 5 | |
C17-F18 | mean | 1805.36 | 2,399,086 | 10,241.21 | 4,782,098 | 9564.09 | 10,411.16 | 19,850.53 | 17,869.42 | 16,995.77 | 25,051.26 | 8441.913 | 18,649.31 | 11,044.94 |
best | 1800.003 | 123,923.2 | 4355.372 | 237,008.5 | 3779.841 | 6555.448 | 5705.371 | 7595.718 | 5596.977 | 20,423.43 | 5658.557 | 2707.215 | 3173.378 | |
worst | 1820.451 | 6,951,476 | 13,378.89 | 13,881,607 | 14,152.9 | 13,959.13 | 31,012.63 | 28,581.17 | 28,478.96 | 31,262.26 | 10,239.97 | 34,482.83 | 15,801.01 | |
std | 10.33599 | 3,247,833 | 4155.94 | 6,493,306 | 4845.014 | 3162.788 | 12,525.29 | 10,147.75 | 11,917.16 | 5120.503 | 2008.171 | 16,847.52 | 5665.568 | |
median | 1800.492 | 1,260,473 | 11,615.29 | 2,504,888 | 10,161.81 | 10,565.02 | 21,342.07 | 17,650.4 | 16,953.58 | 24,259.68 | 8934.562 | 18,703.59 | 12,602.68 | |
rank | 1 | 12 | 4 | 13 | 3 | 5 | 10 | 8 | 7 | 11 | 2 | 9 | 6 | |
C17-F19 | mean | 1900.445 | 325,504.3 | 5935.585 | 591,041.3 | 5003.989 | 105,644.8 | 29,515.62 | 1912.455 | 4823.948 | 4247.239 | 34,230.4 | 21,241.26 | 5494.354 |
best | 1900.039 | 21,793.92 | 2132.331 | 38,754.53 | 2250.713 | 1941.321 | 6733.843 | 1907.913 | 1937.739 | 2020.488 | 9623.886 | 2508.153 | 2162.926 | |
worst | 1901.559 | 685,556.3 | 11,420.32 | 1,269,320 | 8208.202 | 210,717.9 | 53,779.76 | 1920.425 | 11,894.35 | 10,787.05 | 49512 | 64,828.83 | 8599.616 | |
std | 0.764786 | 298,070.4 | 4638.779 | 570,173.4 | 3118.72 | 122,971.7 | 19,836.71 | 6.083054 | 4892.154 | 4478.154 | 18,348.08 | 30,181.34 | 2727.618 | |
median | 1900.09 | 297,333.5 | 5094.842 | 528,045.5 | 4778.521 | 104,959.9 | 28,774.43 | 1910.741 | 2731.853 | 2090.709 | 38,892.85 | 8814.03 | 5607.437 | |
rank | 1 | 12 | 7 | 13 | 5 | 11 | 9 | 2 | 4 | 3 | 10 | 8 | 6 | |
C17-F20 | mean | 2000.312 | 2180.452 | 2143.185 | 2187.214 | 2077.529 | 2174.084 | 2173.426 | 2117.168 | 2142.643 | 2060.475 | 2212.957 | 2141.857 | 2042.189 |
best | 2000.312 | 2137.814 | 2026.344 | 2138.12 | 2061.102 | 2089.596 | 2082.569 | 2039.442 | 2109.914 | 2051.221 | 2157.634 | 2121.612 | 2030.104 | |
worst | 2000.312 | 2236.68 | 2247.197 | 2233.726 | 2103.132 | 2269.357 | 2241.644 | 2207.7 | 2206.499 | 2069.219 | 2291.089 | 2168.583 | 2048.706 | |
std | 0 | 42.30789 | 102.0477 | 48.32448 | 18.49766 | 78.21301 | 78.10245 | 70.95967 | 44.71939 | 7.750585 | 66.68667 | 23.97825 | 8.809191 | |
median | 2000.312 | 2173.657 | 2149.599 | 2188.505 | 2072.941 | 2168.692 | 2184.746 | 2110.765 | 2127.08 | 2060.729 | 2201.552 | 2138.617 | 2044.974 | |
rank | 1 | 11 | 8 | 12 | 4 | 10 | 9 | 5 | 7 | 3 | 13 | 6 | 2 | |
C17-F21 | mean | 2200 | 2276.888 | 2211.596 | 2256.371 | 2248.035 | 2305.12 | 2292.26 | 2244.631 | 2295.146 | 2283.72 | 2341.352 | 2299.769 | 2282.443 |
best | 2200 | 2238.172 | 2203.467 | 2220.119 | 2245.945 | 2217.83 | 2215.447 | 2200.006 | 2291.612 | 2203.123 | 2326.674 | 2292.999 | 2222.304 | |
worst | 2200 | 2301.147 | 2232.763 | 2276.984 | 2250.166 | 2344.556 | 2329.374 | 2290.374 | 2299.319 | 2316.211 | 2355.904 | 2306.111 | 2311.539 | |
std | 0 | 29.46026 | 14.53934 | 25.83102 | 1.834601 | 60.80115 | 53.26074 | 52.93258 | 3.255673 | 55.58281 | 12.54634 | 6.624074 | 41.70537 | |
median | 2200 | 2284.115 | 2205.076 | 2264.191 | 2248.015 | 2329.046 | 2312.11 | 2244.072 | 2294.826 | 2307.773 | 2341.415 | 2299.982 | 2297.965 | |
rank | 1 | 6 | 2 | 5 | 4 | 12 | 9 | 3 | 10 | 8 | 13 | 11 | 7 | |
C17-F22 | mean | 2300.073 | 2634.35 | 2307.561 | 2817.565 | 2304.217 | 2647.819 | 2320.013 | 2288.058 | 2307.239 | 2316.461 | 2300.016 | 2311.164 | 2315.079 |
best | 2300 | 2534.378 | 2303.667 | 2642.042 | 2300.793 | 2425.338 | 2316.081 | 2240.701 | 2301.065 | 2311.233 | 2300 | 2300.536 | 2312.63 | |
worst | 2300.29 | 2733.762 | 2309.368 | 2946.395 | 2307.868 | 2822.497 | 2326.426 | 2304.494 | 2318.833 | 2326.313 | 2300.063 | 2338.212 | 2318.869 | |
std | 0.149013 | 90.41136 | 2.697547 | 131.6308 | 3.057073 | 182.0508 | 4.737604 | 32.43726 | 8.39374 | 7.097258 | 0.032379 | 18.56028 | 2.740047 | |
median | 2300 | 2634.631 | 2308.604 | 2840.912 | 2304.104 | 2671.721 | 2318.773 | 2303.519 | 2304.53 | 2314.148 | 2300 | 2302.954 | 2314.408 | |
rank | 3 | 11 | 6 | 13 | 4 | 12 | 10 | 1 | 5 | 9 | 2 | 7 | 8 | |
C17-F23 | mean | 2600.919 | 2675.602 | 2635.603 | 2684.856 | 2612.206 | 2704.076 | 2641.197 | 2617.205 | 2611.715 | 2636.003 | 2761.645 | 2637.469 | 2647.453 |
best | 2600.003 | 2646.262 | 2626.198 | 2660.766 | 2610.465 | 2629.043 | 2626.035 | 2606.13 | 2607.025 | 2626.737 | 2706.83 | 2631.721 | 2630.546 | |
worst | 2602.87 | 2692.243 | 2650.446 | 2718.92 | 2614.369 | 2741.335 | 2658.505 | 2626.838 | 2617.257 | 2644.148 | 2878.017 | 2647.364 | 2654.735 | |
std | 1.356104 | 22.27213 | 11.80346 | 27.9914 | 1.988046 | 52.16587 | 17.88037 | 9.21113 | 5.534287 | 7.906614 | 82.549 | 7.351876 | 11.7669 | |
median | 2600.403 | 2681.952 | 2632.883 | 2679.868 | 2611.995 | 2722.963 | 2640.125 | 2617.926 | 2611.288 | 2636.562 | 2730.867 | 2635.396 | 2652.266 | |
rank | 1 | 10 | 5 | 11 | 3 | 12 | 8 | 4 | 2 | 6 | 13 | 7 | 9 | |
C17-F24 | mean | 2630.488 | 2762.071 | 2745.924 | 2815.196 | 2630.627 | 2662.311 | 2740.035 | 2674.963 | 2730.073 | 2736.013 | 2728.969 | 2744.203 | 2708.47 |
best | 2516.677 | 2708.447 | 2704.758 | 2780.272 | 2600.833 | 2541.706 | 2699.899 | 2503.766 | 2691.635 | 2707.8 | 2509.432 | 2723.673 | 2568.696 | |
worst | 2732.32 | 2835.794 | 2776.692 | 2882.878 | 2652.69 | 2798.978 | 2781.865 | 2754.804 | 2755.634 | 2760.795 | 2871.458 | 2777.392 | 2798.205 | |
std | 119.6573 | 55.18024 | 30.9873 | 48.1502 | 25.83034 | 134.8991 | 37.08252 | 119.6302 | 28.56004 | 28.06907 | 159.5899 | 26.51961 | 100.7278 | |
median | 2636.477 | 2752.021 | 2751.124 | 2798.817 | 2634.491 | 2654.28 | 2739.188 | 2720.64 | 2736.512 | 2737.728 | 2767.493 | 2737.874 | 2733.49 | |
rank | 1 | 12 | 11 | 13 | 2 | 3 | 9 | 4 | 7 | 8 | 6 | 10 | 5 | |
C17-F25 | mean | 2932.639 | 3104.863 | 2916.531 | 3222.13 | 2920.238 | 3101.7 | 2911.526 | 2923.775 | 2937.735 | 2933.388 | 2923.919 | 2924.813 | 2949.13 |
best | 2898.047 | 3047.474 | 2898.929 | 3166.094 | 2913.328 | 2911.802 | 2793.487 | 2907.692 | 2925.184 | 2913.237 | 2909.09 | 2898.569 | 2931.825 | |
worst | 2945.793 | 3232.527 | 2948.134 | 3280.582 | 2926.531 | 3537.034 | 2954.542 | 2943.657 | 2945.485 | 2950.891 | 2943.393 | 2946.433 | 2959.685 | |
std | 23.71545 | 89.3546 | 22.24281 | 48.57388 | 5.736208 | 301.5004 | 80.86904 | 19.04683 | 9.501574 | 19.65598 | 17.75496 | 25.26368 | 12.48227 | |
median | 2943.359 | 3069.725 | 2909.53 | 3220.923 | 2920.547 | 2978.982 | 2949.038 | 2921.876 | 2940.134 | 2934.712 | 2921.596 | 2927.126 | 2952.505 | |
rank | 7 | 12 | 2 | 13 | 3 | 11 | 1 | 4 | 9 | 8 | 5 | 6 | 10 | |
C17-F26 | mean | 2900 | 3453.143 | 2967.207 | 3620.709 | 2993.976 | 3506.647 | 3138.198 | 2900.124 | 3207.466 | 3158.072 | 3709.372 | 2903.417 | 2897.657 |
best | 2900 | 3178.785 | 2821.729 | 3348.132 | 2893.364 | 3105.541 | 2922.904 | 2900.095 | 2958.264 | 2910.145 | 2821.729 | 2821.729 | 2737.911 | |
worst | 2900 | 3636.374 | 3116.144 | 3904.391 | 3231.247 | 4052.733 | 3484.204 | 2900.163 | 3747.685 | 3721.239 | 4119.597 | 2991.938 | 3076.415 | |
std | 3.81 × 10−13 | 208.2441 | 172.5583 | 246.3436 | 163.2219 | 475.7115 | 252.054 | 0.030928 | 373.311 | 388.1521 | 617.6728 | 71.48489 | 176.0918 | |
median | 2900 | 3498.708 | 2965.477 | 3615.157 | 2925.647 | 3434.157 | 3072.842 | 2900.12 | 3061.957 | 3000.451 | 3948.081 | 2900 | 2888.152 | |
rank | 2 | 10 | 5 | 12 | 6 | 11 | 7 | 3 | 9 | 8 | 13 | 4 | 1 | |
C17-F27 | mean | 3089.518 | 3190.876 | 3115.176 | 3208.701 | 3102.289 | 3165.276 | 3178.234 | 3091.294 | 3111.9 | 3111.042 | 3204.412 | 3128.703 | 3148.844 |
best | 3089.518 | 3150.567 | 3094.39 | 3121.245 | 3091.812 | 3100.385 | 3164.856 | 3089.68 | 3093.658 | 3094.456 | 3194.176 | 3095.896 | 3114.621 | |
worst | 3089.518 | 3259.329 | 3166.45 | 3370.363 | 3126.797 | 3200.841 | 3188.133 | 3094.102 | 3162.963 | 3158.321 | 3222.553 | 3168.53 | 3198.444 | |
std | 2.7 × 10−13 | 48.5967 | 35.21142 | 113.3577 | 16.90366 | 46.74527 | 9.978096 | 2.136325 | 34.99952 | 32.38107 | 12.96996 | 31.37261 | 36.39941 | |
median | 3089.518 | 3176.804 | 3099.932 | 3171.599 | 3095.273 | 3179.939 | 3179.972 | 3090.697 | 3095.489 | 3095.696 | 3200.46 | 3125.193 | 3141.156 | |
rank | 1 | 11 | 6 | 13 | 3 | 9 | 10 | 2 | 5 | 4 | 12 | 7 | 8 | |
C17-F28 | mean | 3100 | 3514.354 | 3214.418 | 3670.974 | 3199.652 | 3508.782 | 3257.035 | 3216.62 | 3305.907 | 3289.216 | 3394.852 | 3272.889 | 3223.029 |
best | 3100 | 3476.288 | 3100 | 3601.782 | 3156.265 | 3362.699 | 3144.295 | 3100.104 | 3179.602 | 3195.809 | 3383.704 | 3164.824 | 3137.728 | |
worst | 3100 | 3541.169 | 3344.066 | 3720.92 | 3220.577 | 3684.645 | 3344.495 | 3344.066 | 3362.306 | 3344.269 | 3410.343 | 3344.246 | 3447.511 | |
std | 0 | 29.78092 | 110.8815 | 56.79583 | 30.57208 | 171.5013 | 105.6768 | 138.4256 | 87.16382 | 72.781 | 12.67838 | 83.55076 | 154.2956 | |
median | 3100 | 3519.979 | 3206.803 | 3680.597 | 3210.882 | 3493.892 | 3269.675 | 3211.154 | 3340.86 | 3308.394 | 3392.68 | 3291.243 | 3153.438 | |
rank | 1 | 12 | 3 | 13 | 2 | 11 | 6 | 4 | 9 | 8 | 10 | 7 | 5 | |
C17-F29 | mean | 3132.241 | 3306.737 | 3260.455 | 3336.776 | 3191.911 | 3219.805 | 3314.628 | 3191.559 | 3244.171 | 3199.94 | 3312.094 | 3244.905 | 3220.644 |
best | 3130.076 | 3288.739 | 3197.72 | 3276.369 | 3160.311 | 3161.023 | 3219.005 | 3140.557 | 3181.05 | 3160.038 | 3218.075 | 3161.935 | 3179.846 | |
worst | 3134.841 | 3320.542 | 3328.725 | 3392.986 | 3227.229 | 3278.448 | 3438.587 | 3261.751 | 3340.734 | 3219.468 | 3555.08 | 3314.906 | 3261.648 | |
std | 2.549599 | 13.65937 | 69.3717 | 61.79221 | 30.11811 | 49.33958 | 94.5213 | 52.61156 | 78.09502 | 28.5812 | 167.0404 | 71.15231 | 35.44834 | |
median | 3132.023 | 3308.834 | 3257.687 | 3338.874 | 3190.052 | 3219.874 | 3300.46 | 3181.964 | 3227.45 | 3210.127 | 3237.611 | 3251.389 | 3220.542 | |
rank | 1 | 10 | 9 | 13 | 3 | 5 | 12 | 2 | 7 | 4 | 11 | 8 | 6 | |
C17-F30 | mean | 3418.734 | 1,893,250 | 247,550.8 | 3,081,076 | 348,132.8 | 515,542.3 | 832,010.7 | 254,381.3 | 784,805.7 | 51,366.55 | 656,487.9 | 325,092.3 | 1,280,488 |
best | 3394.682 | 1,395,567 | 88,283.28 | 694,121.4 | 13,900.54 | 94,669.51 | 4300.199 | 6784.595 | 28,699.43 | 25,097.75 | 504,846.8 | 5916.503 | 441,195.3 | |
worst | 3442.907 | 2,702,421 | 644,006.3 | 4,866,186 | 513,544.8 | 1,089,459 | 3,139,392 | 968,316.2 | 1,135,568 | 85,836.23 | 838,197.2 | 644,037 | 2,916,441 | |
std | 28.52304 | 582,331.1 | 272,203.3 | 1,794,176 | 233,063.8 | 434,164.2 | 1,581,899 | 489,011.3 | 534,148.8 | 30,469.33 | 142,278.9 | 377,756.8 | 1,198,358 | |
median | 3418.673 | 1,737,505 | 128,956.8 | 3,381,998 | 432,543 | 439,020.4 | 92,175.23 | 21,212.13 | 987,477.9 | 47,266.11 | 641,453.7 | 325,207.8 | 882,158.5 | |
rank | 1 | 12 | 3 | 13 | 6 | 7 | 10 | 4 | 9 | 2 | 8 | 5 | 11 | |
Sum rank | 38 | 318 | 177 | 350 | 106 | 286 | 239 | 116 | 188 | 191 | 238 | 183 | 197 | |
Mean rank | 1.310345 | 10.96552 | 6.103448 | 12.06897 | 3.655172 | 9.862069 | 8.241379 | 4 | 6.482759 | 6.586207 | 8.206897 | 6.310345 | 6.793103 | |
Total rank | 1 | 12 | 4 | 13 | 2 | 11 | 10 | 3 | 6 | 7 | 9 | 5 | 8 |
Optimization results of CEC 2017 test suite (dimension = 30); background color has been used in order to make the table more reader-friendly and to separate the results of benchmark functions from each other; The best results are specified using bold.
POA | WSO | AVOA | RSA | MPA | TSA | WOA | MVO | GWO | TLBO | GSA | PSO | GA | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C17-F1 | mean | 100 | 2.19 × 1010 | 2613.281 | 3.43 × 1010 | 22,347.55 | 1.49 × 1010 | 1.42 × 109 | 448,448 | 1.39 × 109 | 5.15 × 109 | 8,761,210 | 1.17 × 109 | 1.49 × 108 |
best | 100 | 1.89 × 1010 | 249.9507 | 3.06 × 1010 | 10,293.31 | 9.38 × 109 | 1.12 × 109 | 348,397.6 | 2.29 × 108 | 3.25 × 109 | 2127.199 | 3140.724 | 1.11 × 108 | |
worst | 100 | 2.74 × 1010 | 6400.558 | 4.22 × 1010 | 33,968.45 | 2.04 × 1010 | 1.76 × 109 | 570,375.9 | 4.19 × 109 | 7.67 × 109 | 30,586,212 | 4.68 × 109 | 2.05 × 108 | |
std | 8.43 × 10−15 | 4.1 × 109 | 2961.181 | 5.49 × 109 | 11,751.58 | 5.27 × 109 | 3.38 × 108 | 112,689.2 | 1.93 × 109 | 1.9 × 109 | 15,098,863 | 2.4 × 109 | 41,823,286 | |
median | 100 | 2.07 × 1010 | 1901.307 | 3.22 × 1010 | 22,564.22 | 1.5 × 1010 | 1.4 × 109 | 437,509.3 | 5.74 × 108 | 4.83 × 109 | 2,228,251 | 2,665,370 | 1.39 × 108 | |
rank | 1 | 12 | 2 | 13 | 3 | 11 | 9 | 4 | 8 | 10 | 5 | 7 | 6 | |
C17-F3 | mean | 300 | 81,233.41 | 37,329.8 | 61,434.22 | 969.2666 | 39,412.41 | 193,462.9 | 1530.474 | 34,798.53 | 28,973.43 | 79,991.48 | 26,646.5 | 139,514.4 |
best | 300 | 74,187.68 | 20,290.72 | 47,586.37 | 759.5804 | 37,343.78 | 160,065.6 | 1213.136 | 30,406.4 | 24,674.27 | 68,874.59 | 19,026.26 | 105,582.7 | |
worst | 300 | 89,185.68 | 48,259.67 | 66,731.14 | 1181.838 | 41,525.55 | 222,246.5 | 2083.641 | 38,857.75 | 31,375.4 | 88,084.82 | 34,209.61 | 193,825.8 | |
std | 0 | 7603.304 | 12,317.32 | 9512.63 | 194.7523 | 2152.061 | 26,564.6 | 396.5439 | 3561.027 | 3099.143 | 8899.439 | 7103.868 | 43,017.94 | |
median | 300 | 80,780.14 | 40,384.41 | 65,709.68 | 967.8242 | 39,390.15 | 195,769.8 | 1412.559 | 34,964.98 | 29,922.02 | 81,503.25 | 26,675.06 | 129,324.6 | |
rank | 1 | 11 | 7 | 9 | 2 | 8 | 13 | 3 | 6 | 5 | 10 | 4 | 12 | |
C17-F4 | mean | 458.5616 | 5454.175 | 505.3711 | 8271.423 | 487.4112 | 3867.585 | 790.9394 | 490.4413 | 553.0887 | 833.3965 | 572.1942 | 596.6992 | 753.4735 |
best | 458.5616 | 3096.677 | 486.3042 | 5328.848 | 478.6691 | 949.7377 | 736.6592 | 483.8844 | 506.6625 | 660.6389 | 555.214 | 506.2318 | 709.9571 | |
worst | 458.5616 | 7356.503 | 520.5268 | 11,531.91 | 505.5639 | 6379.264 | 858.7068 | 501.689 | 579.2485 | 1167.212 | 591.7098 | 754.0269 | 773.3006 | |
std | 0 | 1813.388 | 14.58486 | 2644.597 | 12.6856 | 2355.048 | 57.19553 | 8.087422 | 32.75768 | 232.9876 | 16.34613 | 116.8234 | 30.48773 | |
median | 458.5616 | 5681.76 | 507.3267 | 8112.464 | 482.706 | 4070.67 | 784.1958 | 488.0959 | 563.2219 | 752.8677 | 570.9265 | 563.2689 | 765.3182 | |
rank | 1 | 12 | 4 | 13 | 2 | 11 | 9 | 3 | 5 | 10 | 6 | 7 | 8 | |
C17-F5 | mean | 502.4874 | 788.675 | 688.8314 | 821.4349 | 569.9836 | 746.1304 | 770.5924 | 600.2459 | 602.3281 | 726.4291 | 686.6635 | 611.2496 | 669.5814 |
best | 500.995 | 772.1701 | 658.1836 | 799.8365 | 551.0609 | 722.4248 | 746.244 | 587.598 | 568.2726 | 707.4411 | 670.418 | 590.5804 | 628.3879 | |
worst | 503.9798 | 806.4481 | 737.7376 | 849.8832 | 588.9952 | 774.1923 | 781.9335 | 629.526 | 626.3604 | 748.2691 | 708.7927 | 652.7534 | 722.3131 | |
std | 1.319286 | 14.65498 | 36.97029 | 24.54438 | 16.31498 | 25.13527 | 16.8415 | 20.18613 | 29.46007 | 20.29882 | 17.62707 | 28.98926 | 39.98674 | |
median | 502.4874 | 788.041 | 679.7021 | 818.0099 | 569.9392 | 743.9522 | 777.0961 | 591.9299 | 607.3398 | 725.0032 | 683.7216 | 600.8324 | 663.8123 | |
rank | 1 | 12 | 8 | 13 | 2 | 10 | 11 | 3 | 4 | 9 | 7 | 5 | 6 | |
C17-F6 | mean | 600 | 666.4978 | 638.8884 | 669.1329 | 602.7229 | 664.118 | 663.4798 | 620.3129 | 609.9019 | 636.0709 | 647.051 | 639.0789 | 625.1306 |
best | 600 | 665.3934 | 637.2348 | 664.7104 | 601.6637 | 651.3463 | 654.3941 | 610.402 | 603.8971 | 630.1431 | 646.43 | 628.9354 | 619.2719 | |
worst | 600 | 667.5953 | 641.4742 | 674.6851 | 603.8923 | 671.6263 | 667.9951 | 630.8845 | 615.81 | 645.7316 | 647.876 | 648.0269 | 628.9638 | |
std | 6.74 × 10−14 | 0.932484 | 1.88193 | 4.731746 | 0.99459 | 9.794226 | 6.374473 | 9.903149 | 5.03593 | 7.038561 | 0.654628 | 8.680735 | 4.336506 | |
median | 600 | 666.5013 | 638.4222 | 668.568 | 602.6678 | 666.7496 | 665.7649 | 619.9825 | 609.9503 | 634.2045 | 646.9491 | 639.6766 | 626.1434 | |
rank | 1 | 12 | 7 | 13 | 2 | 11 | 10 | 4 | 3 | 6 | 9 | 8 | 5 | |
C17-F7 | mean | 733.478 | 1204.463 | 1078.151 | 1238.467 | 828.2657 | 1142.796 | 1211.954 | 834.3939 | 860.7791 | 1019.025 | 932.0193 | 854.6732 | 928.9018 |
best | 732.8186 | 1164.527 | 981.5636 | 1227.053 | 805.6758 | 1021.289 | 1175.895 | 789.8107 | 801.9995 | 945.5342 | 892.7306 | 836.9552 | 895.7613 | |
worst | 734.5199 | 1235.118 | 1213.361 | 1258.108 | 873.3993 | 1268.082 | 1279.518 | 896.1273 | 894.4226 | 1083.087 | 990.8162 | 877.4305 | 974.77 | |
std | 0.774451 | 31.41462 | 105.2435 | 14.2092 | 31.48748 | 109.9771 | 49.47859 | 46.76886 | 41.54959 | 73.85197 | 44.20094 | 17.97128 | 33.98216 | |
median | 733.2867 | 1209.104 | 1058.839 | 1234.354 | 816.9939 | 1140.907 | 1196.201 | 825.8188 | 873.347 | 1023.739 | 922.2653 | 852.1535 | 922.538 | |
rank | 1 | 11 | 9 | 13 | 2 | 10 | 12 | 3 | 5 | 8 | 7 | 4 | 6 | |
C17-F8 | mean | 803.3298 | 1038.449 | 925.7533 | 1069.623 | 876.5654 | 1016.808 | 992.9782 | 878.8546 | 877.7404 | 986.4922 | 935.6434 | 904.0603 | 956.231 |
best | 801.2023 | 1025.817 | 900.5847 | 1052.536 | 871.0406 | 979.7928 | 945.8382 | 853.3074 | 872.0014 | 970.7384 | 915.381 | 894.3161 | 942.8596 | |
worst | 804.1574 | 1055.496 | 943.5544 | 1092.03 | 883.5203 | 1103.866 | 1028.054 | 903.9133 | 884.2305 | 1014.274 | 958.174 | 917.1052 | 973.4873 | |
std | 1.459319 | 13.93036 | 20.10293 | 20.64133 | 5.327237 | 60.20137 | 36.04833 | 22.81096 | 5.469996 | 19.61526 | 19.47002 | 10.42038 | 15.81918 | |
median | 803.9798 | 1036.242 | 929.4371 | 1066.963 | 875.8503 | 991.7858 | 999.0104 | 879.0988 | 877.3648 | 980.4783 | 934.5094 | 902.4099 | 954.2886 | |
rank | 1 | 12 | 6 | 13 | 2 | 11 | 10 | 4 | 3 | 9 | 7 | 5 | 8 | |
C17-F9 | mean | 900 | 9295.993 | 4173.342 | 9012.957 | 1054.217 | 9733.216 | 9347.75 | 4699.464 | 1882.552 | 4964.801 | 3552.341 | 3108.773 | 1228.1 |
best | 900 | 7964.504 | 3122.833 | 8794.493 | 924.8592 | 5988.134 | 7180.18 | 3773.249 | 1433.066 | 3627.866 | 3103.889 | 1915.365 | 1050.822 | |
worst | 900 | 10,549.7 | 4734.648 | 9123.556 | 1181.76 | 13,095.64 | 11,118.81 | 7107.103 | 2539.514 | 7419.807 | 4243.209 | 4661.288 | 1404.044 | |
std | 6.74 × 10−14 | 1104.682 | 740.9093 | 152.1923 | 121.9623 | 3015.762 | 2035.1 | 1652.669 | 551.4373 | 1762.665 | 515.4767 | 1196.496 | 170.3034 | |
median | 900 | 9334.885 | 4417.945 | 9066.889 | 1055.124 | 9924.545 | 9546.007 | 3958.751 | 1778.814 | 4405.766 | 3431.134 | 2929.219 | 1228.767 | |
rank | 1 | 11 | 7 | 10 | 2 | 13 | 12 | 8 | 4 | 9 | 6 | 5 | 3 | |
C17-F10 | mean | 2293.267 | 6412.998 | 4935.853 | 6985.307 | 3713.286 | 5861.942 | 5808.81 | 4264.686 | 4380.976 | 7001.727 | 4430.57 | 4591.072 | 5513.346 |
best | 1851.756 | 5855.591 | 4355.06 | 6195.64 | 3430.104 | 4624.483 | 5082.697 | 3975.742 | 3968.251 | 6711.848 | 4160.289 | 4401.901 | 5126.171 | |
worst | 2525.027 | 6695.583 | 5351.312 | 7529.713 | 4017.336 | 6380.625 | 6852.131 | 4623.226 | 4585.773 | 7167.196 | 4793.76 | 5012.506 | 5916.111 | |
std | 308.512 | 389.0405 | 476.6797 | 581.2411 | 280.4434 | 851.4741 | 802.03 | 315.2446 | 291.3034 | 210.3384 | 296.6351 | 296.959 | 387.4678 | |
median | 2398.142 | 6550.409 | 5018.519 | 7107.938 | 3702.853 | 6221.329 | 5650.205 | 4229.888 | 4484.939 | 7063.932 | 4384.117 | 4474.942 | 5505.55 | |
rank | 1 | 11 | 7 | 12 | 2 | 10 | 9 | 3 | 4 | 13 | 5 | 6 | 8 | |
C17-F11 | mean | 1102.987 | 6454.855 | 1232.689 | 7540.948 | 1158.917 | 4470.63 | 6715.96 | 1279.834 | 2016.264 | 1842.932 | 2604.326 | 1225.604 | 7847.806 |
best | 1100.995 | 5343.535 | 1176.99 | 6172.532 | 1119.088 | 3225.48 | 4877.451 | 1243.515 | 1342.749 | 1510.021 | 2056.133 | 1200.781 | 2992.546 | |
worst | 1105.977 | 7366.873 | 1286.378 | 8465.077 | 1187.506 | 6656.979 | 9855.263 | 1314.717 | 3807.505 | 2457.777 | 3166.256 | 1248.844 | 14,582.53 | |
std | 2.210814 | 913.6114 | 46.85703 | 1078.653 | 30.27007 | 1583.349 | 2228.596 | 41.35443 | 1228.211 | 431.1576 | 537.3454 | 23.86209 | 5101.831 | |
median | 1102.487 | 6554.506 | 1233.693 | 7763.091 | 1164.537 | 4000.031 | 6065.562 | 1280.551 | 1457.402 | 1701.966 | 2597.458 | 1226.396 | 6908.076 | |
rank | 1 | 10 | 4 | 12 | 2 | 9 | 11 | 5 | 7 | 6 | 8 | 3 | 13 | |
C17-F12 | mean | 1744.553 | 5.88 × 109 | 17,450,698 | 9.13 × 109 | 18,387.77 | 4.24 × 109 | 2.07 × 108 | 9,395,467 | 43,971,467 | 2.53 × 108 | 1.67 × 108 | 2,145,195 | 6,431,729 |
best | 1721.81 | 4.86 × 109 | 2,455,842 | 8.13 × 109 | 13,217.15 | 2.18 × 109 | 52,999,424 | 4,362,972 | 4,268,282 | 1.62 × 108 | 32,203,594 | 232,101.1 | 4,453,485 | |
worst | 1764.937 | 7.46 × 109 | 42,619,251 | 1.15 × 1010 | 23,387.01 | 5.55 × 109 | 4.14 × 108 | 22,731,848 | 92,210,162 | 4.39 × 108 | 5.32 × 108 | 4,264,822 | 8,418,583 | |
std | 20.69875 | 1.14 × 109 | 18,158,260 | 1.64 × 109 | 4451.061 | 1.49 × 109 | 1.71 × 108 | 9,145,700 | 39,378,893 | 1.29 × 108 | 2.5 × 108 | 1,786,631 | 1,847,128 | |
median | 1745.733 | 5.59 × 109 | 12,363,849 | 8.44 × 109 | 18,473.46 | 4.62 × 109 | 1.81 × 108 | 5,243,524 | 39,703,712 | 2.06 × 108 | 51,055,526 | 2,041,929 | 6,427,424 | |
rank | 1 | 12 | 6 | 13 | 2 | 11 | 9 | 5 | 7 | 10 | 8 | 3 | 4 | |
C17-F13 | mean | 1315.791 | 4.78 × 109 | 125,372.3 | 8.82 × 109 | 1795.796 | 1.22 × 109 | 756,831.1 | 76,309.37 | 631,742.6 | 73,765,671 | 30,734.88 | 27,296.78 | 9,967,217 |
best | 1314.587 | 2.33 × 109 | 69,505.05 | 4.63 × 109 | 1565.812 | 16,503,809 | 357,223.2 | 30,683.32 | 76,461.92 | 51,226,748 | 24,971.07 | 11,416.68 | 2,704,385 | |
worst | 1318.646 | 6.69 × 109 | 198,170 | 1.08 × 1010 | 2245.82 | 4.25 × 109 | 1,118,905 | 153,076.9 | 1,959,916 | 1.09 × 108 | 44,874.71 | 61,408.81 | 21,439,242 | |
std | 1.988738 | 1.86 × 109 | 54879 | 2.91 × 109 | 315.5748 | 2.09 × 109 | 407,890.3 | 59,034.82 | 921,235.2 | 25,573,819 | 9789.797 | 23,630.35 | 8,246,276 | |
median | 1314.967 | 5.05 × 109 | 116,907.1 | 9.92 × 109 | 1685.776 | 3.15 × 108 | 775,598 | 60,738.64 | 245,296.1 | 67,531,342 | 26,546.87 | 18,180.81 | 7,862,621 | |
rank | 1 | 12 | 6 | 13 | 2 | 11 | 8 | 5 | 7 | 10 | 4 | 3 | 9 | |
C17-F14 | mean | 1423.017 | 1,583,673 | 226,835.8 | 1,835,217 | 1437.554 | 981,560.3 | 1,857,980 | 17,224.06 | 445,626.9 | 117,098.7 | 955,849.2 | 15,909.45 | 1,677,408 |
best | 1422.014 | 976,681.6 | 31,922.39 | 922,514.9 | 1434.585 | 702,426.8 | 30,232.29 | 4403.604 | 28,944.95 | 68,150.13 | 620,319.3 | 2886.6 | 277,836.4 | |
worst | 1423.993 | 2,004,673 | 524,857.3 | 2,732,711 | 1441.555 | 1,386,589 | 5,675,562 | 29,161.92 | 954,830.9 | 134,697.7 | 1,443,086 | 28,859.22 | 2,827,823 | |
std | 0.830071 | 494,194.3 | 223,386.9 | 894,383.3 | 3.225506 | 322,490.9 | 2,662,657 | 10,953.49 | 482,778.6 | 33,529.54 | 397,688.3 | 11,653.16 | 1,207,941 | |
median | 1423.03 | 1,676,669 | 175,281.7 | 1,842,822 | 1437.038 | 918,612.9 | 863,063.4 | 17,665.35 | 399,365.9 | 132,773.6 | 879,995.7 | 15,945.99 | 1,801,986 | |
rank | 1 | 10 | 6 | 12 | 2 | 9 | 13 | 4 | 7 | 5 | 8 | 3 | 11 | |
C17-F15 | mean | 1503.129 | 2.54 × 108 | 31,519.17 | 4.99 × 108 | 1599.839 | 12,002,926 | 4,212,356 | 35,971.42 | 13,215,344 | 4,286,963 | 13,666.1 | 4238.662 | 798,198 |
best | 1502.462 | 2.2 × 108 | 9374.391 | 4.31 × 108 | 1568.393 | 4,728,541 | 194,271.7 | 20,925.85 | 82,288.08 | 973,598.4 | 9778.652 | 1846.111 | 146,710.5 | |
worst | 1504.265 | 2.81 × 108 | 51,033.83 | 5.51 × 108 | 1613.784 | 27,920,922 | 13,676,518 | 59,349.91 | 49,479,680 | 8,069,607 | 18,446.14 | 7667.485 | 1,788,072 | |
std | 0.878736 | 31,317,095 | 18,070.21 | 60,593,995 | 21.68729 | 10,995,701 | 6,568,827 | 17,104.85 | 24,843,447 | 2,988,423 | 3721.739 | 2648.141 | 771,437.9 | |
median | 1502.893 | 2.58 × 108 | 32,834.22 | 5.07 × 108 | 1608.589 | 7,681,119 | 1,489,318 | 31,804.95 | 1,649,704 | 4,052,323 | 13,219.8 | 3720.525 | 629,004.7 | |
rank | 1 | 12 | 5 | 13 | 2 | 10 | 8 | 6 | 11 | 9 | 4 | 3 | 7 | |
C17-F16 | mean | 1663.469 | 3880.794 | 2780.727 | 4429.79 | 1967.727 | 3007.036 | 3818.944 | 2436.145 | 2399.236 | 3167.806 | 3336.348 | 2722.277 | 2738.09 |
best | 1614.72 | 3612.046 | 2400.514 | 3787.816 | 1713.465 | 2646.388 | 3186.838 | 2248.521 | 2266.9 | 2999.485 | 3173.393 | 2527.152 | 2442.737 | |
worst | 1744.118 | 4112.827 | 3219.231 | 5016.989 | 2173.201 | 3223.217 | 4523.221 | 2651.18 | 2497.872 | 3357.115 | 3491.913 | 2958.075 | 3023.933 | |
std | 63.65095 | 235.5644 | 345.9519 | 676.9997 | 211.8471 | 263.5324 | 566.1256 | 178.2288 | 118.7481 | 160.2248 | 145.9345 | 225.7184 | 288.5744 | |
median | 1647.519 | 3899.152 | 2751.581 | 4457.177 | 1992.122 | 3079.27 | 3782.858 | 2422.44 | 2416.086 | 3157.312 | 3340.043 | 2701.941 | 2742.844 | |
rank | 1 | 12 | 7 | 13 | 2 | 8 | 11 | 4 | 3 | 9 | 10 | 5 | 6 | |
C17-F17 | mean | 1728.099 | 3134.688 | 2354.083 | 3389.138 | 1842.605 | 3022.162 | 2667.351 | 2025.542 | 1901.862 | 2120.603 | 2395.923 | 2238.525 | 2088.621 |
best | 1718.761 | 2631.554 | 2231.916 | 3070.875 | 1748.388 | 2142.768 | 2266.432 | 1981.833 | 1792.086 | 1929.693 | 2310.34 | 2040.211 | 2049.706 | |
worst | 1733.659 | 3757.185 | 2449.769 | 3953.478 | 1894.947 | 5325.838 | 2938.747 | 2151.766 | 2027.281 | 2368.201 | 2522.618 | 2569.374 | 2147.494 | |
std | 6.88979 | 492.2332 | 98.22265 | 410.9112 | 66.42675 | 1579.623 | 295.4104 | 86.44565 | 114.642 | 190.9079 | 105.9575 | 243.7852 | 46.51756 | |
median | 1729.987 | 3075.006 | 2367.323 | 3266.098 | 1863.543 | 2310.021 | 2732.113 | 1984.285 | 1894.041 | 2092.259 | 2375.366 | 2172.258 | 2078.642 | |
rank | 1 | 12 | 8 | 13 | 2 | 11 | 10 | 4 | 3 | 6 | 9 | 7 | 5 | |
C17-F18 | mean | 1825.696 | 23,729,550 | 2,212,009 | 27,283,974 | 1885.211 | 30,340,275 | 4,927,404 | 534,595.3 | 350,552.7 | 1,391,192 | 430,211.5 | 114,852.6 | 3,044,058 |
best | 1822.524 | 6,835,900 | 235,823.5 | 8,821,140 | 1866.68 | 1,112,837 | 1,660,690 | 134,742.3 | 65,780.31 | 646,005.5 | 241,319.2 | 81,807.06 | 2,376,553 | |
worst | 1828.42 | 46,083,790 | 4,413,170 | 53,602,004 | 1896.441 | 57,496,084 | 10,169,814 | 1,446,703 | 900,247.2 | 1,748,911 | 837,349.8 | 136,220 | 4,461,888 | |
std | 2.775128 | 17,820,592 | 2,010,817 | 19,503,687 | 13.58535 | 32,158,616 | 3,755,642 | 628,519 | 403,355.5 | 520,829.7 | 282,413.8 | 24,434.14 | 981,973 | |
median | 1825.92 | 20,999,256 | 2,099,521 | 23,356,376 | 1888.861 | 31,376,090 | 3,939,556 | 278,467.7 | 218,091.7 | 1,584,927 | 321,088.5 | 120,691.7 | 2,668,895 | |
rank | 1 | 11 | 8 | 12 | 2 | 13 | 10 | 6 | 4 | 7 | 5 | 3 | 9 | |
C17-F19 | mean | 1910.989 | 4.85 × 108 | 56,833.4 | 8.17 × 108 | 1921.731 | 2.46 × 108 | 11,962,405 | 784,633.2 | 3,367,690 | 4,802,159 | 68,581.12 | 37,464.21 | 1,353,797 |
best | 1908.84 | 3.63 × 108 | 12,363.24 | 5.9 × 108 | 1919.401 | 3,053,269 | 1,556,878 | 20,101.42 | 59,431.52 | 2,492,766 | 37,340.59 | 7629.39 | 535,107.5 | |
worst | 1913.095 | 6.31 × 108 | 126,214.8 | 1.24 × 109 | 1925.522 | 6.81 × 108 | 20,655,538 | 1,763,741 | 10,858,942 | 6,826,083 | 92,183.96 | 111,581 | 2,404,782 | |
std | 1.984351 | 1.38 × 108 | 50,937.84 | 2.95 × 108 | 2.730401 | 3.21 × 108 | 8,945,361 | 871,528.6 | 5,164,447 | 2,189,230 | 23,450.06 | 50,925.51 | 809,908.7 | |
median | 1911.01 | 4.73 × 108 | 44,377.77 | 7.2 × 108 | 1921.001 | 1.5 × 108 | 12,818,601 | 677,345.4 | 1,276,194 | 4,944,894 | 72,399.97 | 15,323.22 | 1,237,648 | |
rank | 1 | 12 | 4 | 13 | 2 | 11 | 10 | 6 | 8 | 9 | 5 | 3 | 7 | |
C17-F20 | mean | 2065.787 | 2766.527 | 2545.205 | 2811.832 | 2159.069 | 2725.378 | 2714.989 | 2519.588 | 2326.117 | 2681.848 | 2859.476 | 2470.911 | 2410.483 |
best | 2029.521 | 2685.094 | 2405.958 | 2657.449 | 2056.898 | 2598.867 | 2558.17 | 2320.368 | 2175.006 | 2617.435 | 2539.35 | 2423.632 | 2364.938 | |
worst | 2161.126 | 2858.293 | 2738.536 | 2900.126 | 2248.615 | 2848.489 | 2862.147 | 2876.053 | 2465.314 | 2781.176 | 3277.45 | 2576.545 | 2452.06 | |
std | 65.37076 | 72.89626 | 145.7221 | 111.8625 | 81.15997 | 105.2842 | 133.9402 | 251.4598 | 122.4135 | 80.36502 | 318.3825 | 73.05095 | 37.17676 | |
median | 2036.25 | 2761.36 | 2518.162 | 2844.877 | 2165.382 | 2727.077 | 2719.818 | 2440.965 | 2332.073 | 2664.39 | 2810.552 | 2441.733 | 2412.468 | |
rank | 1 | 11 | 7 | 12 | 2 | 10 | 9 | 6 | 3 | 8 | 13 | 5 | 4 | |
C17-F21 | mean | 2308.456 | 2572.955 | 2420.169 | 2621.231 | 2357.321 | 2499.307 | 2562.737 | 2390.021 | 2377.222 | 2466.006 | 2528.957 | 2414.753 | 2463.582 |
best | 2304.034 | 2493.073 | 2232.502 | 2554.499 | 2348.478 | 2307.582 | 2498.155 | 2359.397 | 2347.988 | 2455.094 | 2512.979 | 2398.004 | 2435.213 | |
worst | 2312.987 | 2625.981 | 2553.058 | 2700.04 | 2371.332 | 2612.772 | 2617.742 | 2414.764 | 2389.966 | 2475.425 | 2559.852 | 2426.276 | 2506.717 | |
std | 4.579845 | 64.4505 | 138.5267 | 65.15362 | 10.30986 | 138.3342 | 60.89915 | 23.7242 | 20.46152 | 10.28472 | 21.56359 | 14.12901 | 31.25484 | |
median | 2308.402 | 2586.384 | 2447.558 | 2615.193 | 2354.736 | 2538.437 | 2567.526 | 2392.961 | 2385.467 | 2466.752 | 2521.499 | 2417.367 | 2456.2 | |
rank | 1 | 12 | 6 | 13 | 2 | 9 | 11 | 4 | 3 | 8 | 10 | 5 | 7 | |
C17-F22 | mean | 2300 | 7084.865 | 5222.881 | 6880.473 | 2302.464 | 7749.913 | 6598.274 | 3692.769 | 2640.103 | 5149.572 | 5690.404 | 4475.754 | 2638.563 |
best | 2300 | 6799.132 | 2302.572 | 6013.125 | 2301.607 | 7555.353 | 5792.796 | 2305.473 | 2531.242 | 2656.684 | 3732.182 | 2432.779 | 2575.489 | |
worst | 2300 | 7530.718 | 6351.172 | 7752.205 | 2303.911 | 7841.768 | 7316.866 | 5415.585 | 2863.893 | 7913.53 | 6551.003 | 6452.917 | 2687.306 | |
std | 0 | 321.1263 | 2002.835 | 767.6903 | 1.061178 | 138.2371 | 650.5143 | 1668.406 | 156.2621 | 2939.887 | 1349.643 | 1898.886 | 56.91863 | |
median | 2300 | 7004.805 | 6118.891 | 6878.281 | 2302.169 | 7801.265 | 6641.717 | 3525.01 | 2582.639 | 5014.037 | 6239.216 | 4508.66 | 2645.728 | |
rank | 1 | 12 | 8 | 11 | 2 | 13 | 10 | 5 | 4 | 7 | 9 | 6 | 3 | |
C17-F23 | mean | 2655.081 | 3109.491 | 2885.363 | 3155.951 | 2647.452 | 3113.614 | 2987.155 | 2724.949 | 2736.577 | 2865.867 | 3597.108 | 2863.007 | 2926.383 |
best | 2653.745 | 3036.821 | 2792.667 | 3110.28 | 2499.658 | 3013.031 | 2837.165 | 2687.2 | 2719.693 | 2847.605 | 3505.506 | 2834.598 | 2901.442 | |
worst | 2657.377 | 3178.552 | 3031.739 | 3222.42 | 2703.755 | 3280.56 | 3071.559 | 2749.403 | 2754.474 | 2908.217 | 3687.511 | 2906.401 | 2980.154 | |
std | 1.697988 | 68.35427 | 107.5776 | 50.12905 | 101.4466 | 121.159 | 106.8838 | 27.37701 | 15.40831 | 29.53252 | 98.94313 | 33.94444 | 37.1707 | |
median | 2654.6 | 3111.295 | 2858.524 | 3145.551 | 2693.198 | 3080.433 | 3019.947 | 2731.596 | 2736.071 | 2853.823 | 3597.708 | 2855.513 | 2911.968 | |
rank | 2 | 10 | 7 | 12 | 1 | 11 | 9 | 3 | 4 | 6 | 13 | 5 | 8 | |
C17-F24 | mean | 2831.409 | 3241.513 | 3119.205 | 3326.308 | 2875.638 | 3212.496 | 3073.051 | 2894.483 | 2907.337 | 3010.226 | 3283.04 | 3085.487 | 3166.225 |
best | 2829.992 | 3209.481 | 3001.28 | 3250.677 | 2862.509 | 3119.874 | 3018.482 | 2853.563 | 2896.635 | 2990.26 | 3251.748 | 3021.176 | 3086.14 | |
worst | 2832.366 | 3308.124 | 3251.029 | 3457.948 | 2881.393 | 3255.852 | 3095.358 | 2913.975 | 2913.166 | 3041.037 | 3315.281 | 3182.405 | 3233.528 | |
std | 1.176599 | 46.17052 | 112.6287 | 98.47879 | 9.095286 | 65.19122 | 37.54706 | 28.41498 | 7.691137 | 22.24128 | 28.82213 | 71.00122 | 70.21629 | |
median | 2831.64 | 3224.223 | 3112.255 | 3298.303 | 2879.325 | 3237.129 | 3089.182 | 2905.197 | 2909.774 | 3004.803 | 3282.564 | 3069.184 | 3172.615 | |
rank | 1 | 11 | 8 | 13 | 2 | 10 | 6 | 3 | 4 | 5 | 12 | 7 | 9 | |
C17-F25 | mean | 2886.698 | 3778.564 | 2905.323 | 4308.259 | 2890.58 | 3380.167 | 3051.922 | 2906.017 | 2976.962 | 3045.87 | 2978.771 | 2893.691 | 3073.77 |
best | 2886.691 | 3459.543 | 2893.27 | 3796.357 | 2884.863 | 3059.868 | 3021.001 | 2884.861 | 2944.721 | 2943.505 | 2968.969 | 2887.465 | 3059.545 | |
worst | 2886.707 | 4017.439 | 2938.478 | 4990.555 | 2895.827 | 3712.732 | 3068.179 | 2960.374 | 3036.993 | 3162.281 | 2989.401 | 2908.295 | 3083.95 | |
std | 0.007812 | 239.2238 | 22.7185 | 510.8381 | 5.088898 | 327.7512 | 22.78511 | 37.31992 | 43.94737 | 107.454 | 8.665444 | 10.04843 | 11.07641 | |
median | 2886.698 | 3818.637 | 2894.771 | 4223.061 | 2890.815 | 3374.033 | 3059.254 | 2889.418 | 2963.067 | 3038.848 | 2978.357 | 2889.502 | 3075.793 | |
rank | 1 | 12 | 4 | 13 | 2 | 11 | 9 | 5 | 6 | 8 | 7 | 3 | 10 | |
C17-F26 | mean | 3578.65 | 8312.608 | 6748.721 | 8809.795 | 3047.747 | 7936.265 | 7634.154 | 4600.167 | 4412.45 | 5561.102 | 6871.666 | 4652.067 | 4267.871 |
best | 3559.841 | 7952.123 | 5663.995 | 8103.995 | 3043.527 | 7376.99 | 7009.695 | 4310.505 | 4075.318 | 4388.821 | 5978.83 | 3551.522 | 3939.486 | |
worst | 3607.686 | 8958.698 | 7389.877 | 10,063.25 | 3054.149 | 8287.494 | 8358.253 | 5135.989 | 4931.721 | 6669.841 | 7336.144 | 5966.081 | 4664.532 | |
std | 23.3936 | 481.0495 | 778.935 | 945.3017 | 5.206666 | 401.4653 | 568.6926 | 395.2051 | 374.9892 | 1073.57 | 649.2089 | 1158.03 | 312.2156 | |
median | 3573.536 | 8169.805 | 6970.507 | 8535.966 | 3046.657 | 8040.289 | 7584.334 | 4477.086 | 4321.379 | 5592.874 | 7085.844 | 4545.332 | 4233.733 | |
rank | 2 | 12 | 8 | 13 | 1 | 11 | 10 | 5 | 4 | 7 | 9 | 6 | 3 | |
C17-F27 | mean | 3207.018 | 3548.906 | 3332.744 | 3680.504 | 3213.451 | 3432.917 | 3393.896 | 3227.682 | 3243.298 | 3301.015 | 4702.192 | 3267.723 | 3421.148 |
best | 3200.749 | 3499.138 | 3259.867 | 3442.317 | 3202.083 | 3318.525 | 3250.554 | 3212.231 | 3234.816 | 3234.55 | 4320.546 | 3234.544 | 3356.112 | |
worst | 3210.656 | 3633.364 | 3396.858 | 3923.406 | 3229.739 | 3644.348 | 3500.711 | 3249.91 | 3256.502 | 3362.958 | 4979.658 | 3304.29 | 3460.169 | |
std | 4.773736 | 61.58738 | 73.72286 | 211.864 | 13.2029 | 149.0222 | 110.3439 | 16.30374 | 9.514926 | 54.62672 | 331.9083 | 31.12272 | 46.40822 | |
median | 3208.335 | 3531.561 | 3337.126 | 3678.146 | 3210.992 | 3384.398 | 3412.159 | 3224.293 | 3240.938 | 3303.276 | 4754.281 | 3266.03 | 3434.155 | |
rank | 1 | 11 | 7 | 12 | 2 | 10 | 8 | 3 | 4 | 6 | 13 | 5 | 9 | |
C17-F28 | mean | 3100 | 4523.86 | 3240.506 | 5294.879 | 3196.528 | 3996.778 | 3386.937 | 3232.705 | 3521.426 | 3582.827 | 3457.186 | 3294.198 | 3509.347 |
best | 3100 | 4323.582 | 3214.275 | 5032.036 | 3182.459 | 3523.101 | 3335.125 | 3202.018 | 3352.242 | 3455.219 | 3396.665 | 3179.941 | 3465.061 | |
worst | 3100 | 4740.947 | 3267.785 | 5570.181 | 3222.193 | 4479.995 | 3433.761 | 3260.726 | 3934.763 | 3874.887 | 3584.199 | 3469.229 | 3557.427 | |
std | 2.7 × 10−13 | 183.7042 | 22.46907 | 264.0432 | 18.23778 | 455.0824 | 44.09313 | 24.78707 | 284.7302 | 202.2402 | 88.03279 | 137.5115 | 45.08074 | |
median | 3100 | 4515.456 | 3239.983 | 5288.649 | 3190.73 | 3992.009 | 3389.432 | 3234.039 | 3399.349 | 3500.6 | 3423.941 | 3263.81 | 3507.45 | |
rank | 1 | 12 | 4 | 13 | 2 | 11 | 6 | 3 | 9 | 10 | 7 | 5 | 8 | |
C17-F29 | mean | 3353.75 | 5087.826 | 4182.435 | 5274.316 | 3611.29 | 4953.596 | 4822.947 | 3768.517 | 3724.077 | 4334.459 | 4802.573 | 4044.32 | 4145.088 |
best | 3325.385 | 4705.704 | 3878.416 | 4739.449 | 3481.774 | 4488.326 | 4594.079 | 3656.101 | 3654.319 | 4051.046 | 4571.263 | 3877.567 | 3815.679 | |
worst | 3370.797 | 5496.181 | 4365.531 | 6006.428 | 3731.924 | 5708.04 | 4971.577 | 3872.603 | 3822.108 | 4745.9 | 5022.554 | 4253.432 | 4448.855 | |
std | 20.22231 | 390.4582 | 222.0926 | 640.5091 | 114.0033 | 585.6057 | 165.544 | 94.16507 | 76.66849 | 304.191 | 246.5089 | 159.5929 | 290.9356 | |
median | 3359.41 | 5074.711 | 4242.896 | 5175.694 | 3615.731 | 4809.01 | 4863.066 | 3772.683 | 3709.94 | 4270.446 | 4808.237 | 4023.14 | 4157.909 | |
rank | 1 | 12 | 7 | 13 | 2 | 11 | 10 | 4 | 3 | 8 | 9 | 5 | 6 | |
C17-F30 | mean | 5007.854 | 1.2 × 109 | 1,198,183 | 2.37 × 109 | 7256.376 | 32,265,568 | 32,925,121 | 2,597,860 | 5,356,352 | 31,786,061 | 1,900,575 | 229,623.9 | 590,194.9 |
best | 4955.449 | 8.85 × 108 | 423,016.4 | 1.7 × 109 | 6158.427 | 11,031,639 | 6,566,732 | 467,071 | 1,195,436 | 17,015,110 | 1,659,159 | 7179.109 | 163,864.3 | |
worst | 5086.396 | 1.32 × 109 | 2,121,157 | 2.62 × 109 | 9416.184 | 75,389,656 | 52,758,912 | 3,719,132 | 14,462,906 | 66,673,306 | 2,286,605 | 867,053.8 | 1,128,316 | |
std | 60.57214 | 2.17 × 108 | 729,213.9 | 4.58 × 108 | 1570.007 | 30,004,969 | 19,776,654 | 1,489,740 | 6,293,655 | 24,022,890 | 277,434.8 | 436,680.2 | 482,284 | |
median | 4994.785 | 1.3 × 109 | 1,124,279 | 2.58 × 109 | 6725.446 | 21,320,489 | 36,187,421 | 3,102,619 | 2,883,533 | 21,727,915 | 1,828,269 | 22,131.29 | 534,300 | |
rank | 1 | 12 | 5 | 13 | 2 | 10 | 11 | 7 | 8 | 9 | 6 | 3 | 4 | |
Sum rank | 31 | 334 | 182 | 361 | 57 | 305 | 284 | 128 | 151 | 232 | 231 | 139 | 204 | |
Mean rank | 1.068966 | 11.51724 | 6.275862 | 12.44828 | 1.965517 | 10.51724 | 9.793103 | 4.413793 | 5.206897 | 8 | 7.965517 | 4.793103 | 7.034483 | |
Total rank | 1 | 12 | 6 | 13 | 2 | 11 | 10 | 3 | 5 | 9 | 8 | 4 | 7 |
Optimization results of CEC 2017 test suite (dimension = 50); background color has been used in order to make the table more reader-friendly and to separate the results of benchmark functions from each other; The best results are specified using bold.
POA | WSO | AVOA | RSA | MPA | TSA | WOA | MVO | GWO | TLBO | GSA | PSO | GA | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C17-F1 | mean | 100 | 4.98 × 1010 | 7,694,163 | 7.8 × 1010 | 4,687,637 | 3.17 × 1010 | 6.41 × 109 | 3,383,888 | 7.78 × 109 | 1.73 × 1010 | 1.43 × 1010 | 2.11 × 109 | 8.65 × 109 |
best | 100 | 4.44 × 1010 | 916,036.2 | 6.82 × 1010 | 1,809,188 | 2.92 × 1010 | 3.78 × 109 | 2,421,905 | 5.61 × 109 | 1.17 × 1010 | 1.14 × 1010 | 8.65 × 108 | 8.24 × 109 | |
worst | 100 | 5.33 × 1010 | 20,360,589 | 8.52 × 1010 | 11,885,877 | 3.41 × 1010 | 9.59 × 109 | 4,212,013 | 1.07 × 1010 | 2.33 × 1010 | 1.71 × 1010 | 2.81 × 109 | 9.32 × 109 | |
std | 0 | 4.01 × 109 | 8,873,644 | 7.62 × 109 | 4,964,317 | 2.09 × 109 | 2.82 × 109 | 756,708.6 | 2.16 × 109 | 5.76 × 109 | 2.39 × 109 | 8.78 × 108 | 5.21 × 108 | |
median | 100 | 5.07 × 1010 | 4,750,013 | 7.92 × 1010 | 2,527,742 | 3.18 × 1010 | 6.13 × 109 | 3,450,817 | 7.44 × 109 | 1.7 × 1010 | 1.43 × 1010 | 2.38 × 109 | 8.53 × 109 | |
rank | 1 | 12 | 4 | 13 | 3 | 11 | 6 | 2 | 7 | 10 | 9 | 5 | 8 | |
C17-F3 | mean | 300 | 131,835.8 | 121,939.9 | 131,347.9 | 14,965.02 | 90,792.26 | 194,620.8 | 38,514.36 | 108,129.9 | 81,796.38 | 148,054.1 | 120,427.1 | 219,121.3 |
best | 300 | 113,081.2 | 93,706.17 | 119,156.7 | 12,934.34 | 79,774.46 | 146,792.7 | 30,547.5 | 95,001.03 | 61,871.66 | 133,707 | 90,521.94 | 182,644.6 | |
worst | 300 | 151,612.4 | 148,352 | 143,174.6 | 17,653.06 | 96,796.99 | 296,860.1 | 47,889.01 | 121,370 | 93,323.17 | 167,270.6 | 156,910.3 | 251,776.2 | |
std | 0 | 16,662.92 | 25,349.19 | 10,952.68 | 2175.535 | 8080.823 | 72,592.69 | 7427.946 | 11,067.16 | 14,750.72 | 16,664.14 | 29,574.49 | 29,078.14 | |
median | 300 | 131,324.8 | 122,850.8 | 131,530.3 | 14,636.35 | 93,298.79 | 167,415.2 | 37,810.47 | 108,074.4 | 85,995.34 | 145,619.5 | 117,138.1 | 221,032.1 | |
rank | 1 | 10 | 8 | 9 | 2 | 5 | 12 | 3 | 6 | 4 | 11 | 7 | 13 | |
C17-F4 | mean | 470.3679 | 12,353.44 | 659.3073 | 19,835.21 | 520.8641 | 6991.207 | 1692.379 | 547.5027 | 1273.318 | 2403.23 | 2627.084 | 924.1037 | 1347.608 |
best | 428.5127 | 9616.635 | 640.999 | 13,121.57 | 484.6049 | 5610.825 | 1108.464 | 510.0485 | 960.669 | 1386.37 | 2200.404 | 641.0513 | 1168.399 | |
worst | 525.7252 | 14,063.24 | 675.5487 | 23,684.52 | 573.5045 | 9011.58 | 2005.852 | 605.8885 | 1535.439 | 4062.787 | 2789.659 | 1582.677 | 1455.999 | |
std | 50.91462 | 2040.528 | 16.66823 | 4949.499 | 43.26782 | 1475.615 | 412.7291 | 42.51684 | 267.1199 | 1208.173 | 293.3794 | 453.5134 | 128.9881 | |
median | 463.6168 | 12,866.95 | 660.3407 | 21,267.38 | 512.6735 | 6671.212 | 1827.6 | 537.0369 | 1298.581 | 2081.882 | 2759.135 | 736.3432 | 1383.016 | |
rank | 1 | 12 | 4 | 13 | 2 | 11 | 8 | 3 | 6 | 9 | 10 | 5 | 7 | |
C17-F5 | mean | 504.7261 | 998.7714 | 797.874 | 1023.055 | 696.7875 | 1037.896 | 879.3746 | 698.9245 | 687.8787 | 914.9902 | 754.902 | 740.7178 | 826.1298 |
best | 503.9798 | 971.6799 | 772.4922 | 1007.523 | 628.9187 | 919.5867 | 845.571 | 637.7742 | 665.0593 | 880.0784 | 711.1297 | 695.3349 | 801.0767 | |
worst | 505.9698 | 1032.226 | 832.4122 | 1033.829 | 750.0726 | 1132.417 | 900.3438 | 792.9468 | 711.594 | 937.7921 | 785.3274 | 794.0634 | 843.8261 | |
std | 0.978409 | 29.84483 | 26.55012 | 12.4602 | 52.17824 | 106.2494 | 25.07713 | 71.31889 | 25.48733 | 26.49006 | 35.95038 | 41.72614 | 20.88025 | |
median | 504.4773 | 995.59 | 793.2958 | 1025.434 | 704.0793 | 1049.791 | 885.7917 | 682.4885 | 687.4307 | 921.0452 | 761.5754 | 736.7365 | 829.8082 | |
rank | 1 | 11 | 7 | 12 | 3 | 13 | 9 | 4 | 2 | 10 | 6 | 5 | 8 | |
C17-F6 | mean | 600 | 678.7743 | 649.8125 | 680.4897 | 609.3938 | 674.4157 | 681.0236 | 631.1676 | 618.8765 | 653.1538 | 647.9508 | 644.3503 | 640.179 |
best | 600 | 676.2919 | 645.8267 | 678.6046 | 607.0893 | 657.5593 | 676.5779 | 622.7099 | 614.1754 | 642.6254 | 643.8879 | 642.4606 | 629.4886 | |
worst | 600 | 682.8851 | 654.3317 | 682.9158 | 612.4396 | 688.2301 | 687.8313 | 651.0589 | 627.047 | 660.3253 | 650.3646 | 647.2969 | 650.6368 | |
std | 0 | 3.126532 | 4.035656 | 2.072733 | 2.353657 | 13.99634 | 5.020365 | 13.86957 | 5.932199 | 7.779141 | 2.927148 | 2.245176 | 9.089876 | |
median | 600 | 677.9601 | 649.5457 | 680.2192 | 609.0231 | 675.9367 | 679.8427 | 625.4507 | 617.1418 | 654.8323 | 648.7754 | 643.8218 | 640.2954 | |
rank | 1 | 11 | 8 | 12 | 2 | 10 | 13 | 4 | 3 | 9 | 7 | 6 | 5 | |
C17-F7 | mean | 756.7298 | 1615.316 | 1510.391 | 1698.01 | 982.2029 | 1524.212 | 1545.236 | 1003.011 | 1012.807 | 1355.063 | 1298.967 | 1123.67 | 1212.925 |
best | 754.7543 | 1594.636 | 1451.321 | 1630.929 | 934.7738 | 1397.907 | 1493.027 | 971.7793 | 993.2567 | 1249.798 | 1158.917 | 991.2395 | 1147.95 | |
worst | 758.3522 | 1641.438 | 1565.593 | 1783.808 | 1022.213 | 1648.02 | 1617.358 | 1028.408 | 1028.664 | 1406.086 | 1406.26 | 1316.364 | 1255.178 | |
std | 1.595411 | 20.01803 | 49.79641 | 67.43425 | 43.39772 | 119.7991 | 59.49773 | 24.56744 | 16.92836 | 73.00096 | 114.5055 | 144.1241 | 48.62485 | |
median | 756.9065 | 1612.595 | 1512.325 | 1688.651 | 985.9122 | 1525.461 | 1535.28 | 1005.929 | 1014.653 | 1382.184 | 1315.346 | 1093.538 | 1224.285 | |
rank | 1 | 12 | 9 | 13 | 2 | 10 | 11 | 3 | 4 | 8 | 7 | 5 | 6 | |
C17-F8 | mean | 805.721 | 1315.026 | 1069.907 | 1337.934 | 975.5652 | 1329.453 | 1236.115 | 985.028 | 994.979 | 1233.995 | 1083.154 | 1013.704 | 1180.568 |
best | 802.9849 | 1267.365 | 1031.039 | 1311.392 | 949.5886 | 1246.589 | 1125 | 952.6691 | 965.8927 | 1187.074 | 1075.982 | 977.9443 | 1146.507 | |
worst | 810.9446 | 1351.319 | 1110.142 | 1355.805 | 1001.572 | 1440.841 | 1328.075 | 1043.891 | 1026.654 | 1281.178 | 1095.97 | 1068.267 | 1200.173 | |
std | 3.672737 | 39.08297 | 45.64879 | 19.32054 | 27.95425 | 86.06199 | 86.03151 | 41.35436 | 27.97589 | 39.98849 | 9.254532 | 43.73755 | 24.0814 | |
median | 804.4773 | 1320.71 | 1069.223 | 1342.271 | 975.5499 | 1315.192 | 1245.693 | 971.7758 | 993.6848 | 1233.865 | 1080.331 | 1004.301 | 1187.795 | |
rank | 1 | 11 | 6 | 13 | 2 | 12 | 10 | 3 | 4 | 9 | 7 | 5 | 8 | |
C17-F9 | mean | 900 | 30,080.05 | 11,149.25 | 30,239.59 | 2906.627 | 31,546.08 | 27,482.14 | 16,432.75 | 5843.369 | 20,055.75 | 8985.748 | 8670.898 | 10,745.45 |
best | 900 | 28,896.41 | 10,632.96 | 28,419.95 | 1871.357 | 29,089.26 | 25,588.4 | 8863.034 | 5099.754 | 15,480.28 | 8200.157 | 8043.964 | 8867.123 | |
worst | 900 | 32,836.97 | 11,866.94 | 31,723.8 | 4145.523 | 35,169.81 | 32,120.64 | 21,685.31 | 6634.453 | 23,572.38 | 9691.888 | 9834.376 | 12,353.76 | |
std | 9.53 × 10−14 | 1918.301 | 548.1654 | 1606.899 | 964.9071 | 2690.339 | 3186.233 | 6193.736 | 818.5837 | 3451.708 | 636.8787 | 826.9251 | 1897.767 | |
median | 900 | 29,293.4 | 11,048.55 | 30,407.3 | 2804.813 | 30,962.63 | 26,109.75 | 17,591.33 | 5819.635 | 20,585.17 | 9025.474 | 8402.626 | 10,880.47 | |
rank | 1 | 11 | 7 | 12 | 2 | 13 | 10 | 8 | 3 | 9 | 5 | 4 | 6 | |
C17-F10 | mean | 4347.157 | 11,532.14 | 7659.93 | 12,543.53 | 6175.008 | 10,518.17 | 10,524.61 | 7108.216 | 7941.727 | 12,367.61 | 7886.242 | 7215.482 | 10,459.41 |
best | 3555.132 | 10,983.86 | 7189.875 | 12,178.38 | 5457.78 | 9682.889 | 9353.445 | 5887.021 | 6184.118 | 11,645.95 | 7154.486 | 6946.725 | 10,015.5 | |
worst | 5099.795 | 12,270.5 | 7977.589 | 12,987.68 | 6806.409 | 11,524.62 | 11,596.38 | 8039.728 | 12,231.37 | 12865 | 8919.848 | 7634.923 | 11,036.08 | |
std | 662.2242 | 616.1048 | 346.5361 | 367.537 | 628.0243 | 833.1579 | 1005.392 | 939.4287 | 2967.615 | 603.7201 | 761.6 | 303 | 437.5358 | |
median | 4366.851 | 11,437.1 | 7736.128 | 12,504.04 | 6217.921 | 10,432.59 | 10,574.3 | 7253.058 | 6675.708 | 12,479.74 | 7735.318 | 7140.14 | 10,393.04 | |
rank | 1 | 11 | 5 | 13 | 2 | 9 | 10 | 3 | 7 | 12 | 6 | 4 | 8 | |
C17-F11 | mean | 1128.435 | 12,982.43 | 1525.243 | 17,632.41 | 1233.86 | 10,936.77 | 4425.966 | 1494.635 | 5284.769 | 4439.173 | 11,990.04 | 1580.223 | 20,145.96 |
best | 1121.25 | 11,976.46 | 1426.183 | 15,706.17 | 1192.498 | 9426.317 | 3923.366 | 1369.325 | 3249.087 | 4175.03 | 11,255.98 | 1353.431 | 11,853.62 | |
worst | 1133.132 | 13,620.52 | 1651.403 | 19,094.94 | 1259.489 | 13,091.47 | 5491.437 | 1620.754 | 9037.193 | 4919.792 | 13,565.41 | 1850.293 | 26,952.06 | |
std | 5.590435 | 746.9688 | 107.1157 | 1454.228 | 30.74393 | 1622.687 | 740.6431 | 112.3004 | 2746.288 | 352.4488 | 1090.518 | 218.3901 | 6413.416 | |
median | 1129.678 | 13,166.37 | 1511.693 | 17,864.27 | 1241.727 | 10,614.66 | 4144.53 | 1494.231 | 4426.397 | 4330.935 | 11,569.38 | 1558.583 | 20,889.09 | |
rank | 1 | 11 | 4 | 12 | 2 | 9 | 6 | 3 | 8 | 7 | 10 | 5 | 13 | |
C17-F12 | mean | 2905.102 | 3.63 × 1010 | 61,090,788 | 5.93 × 1010 | 11,987,913 | 2.15 × 1010 | 1.1 × 109 | 65,947,360 | 7.97 × 108 | 4.21 × 109 | 1.81 × 109 | 1.34 × 109 | 1.7 × 108 |
best | 2527.376 | 3.05 × 1010 | 25,877,157 | 4.32 × 1010 | 11,292,468 | 9.08 × 109 | 9.08 × 108 | 35,519,720 | 1.25 × 108 | 2.37 × 109 | 5.95 × 108 | 10,571,947 | 53,696,816 | |
worst | 3168.37 | 4.35 × 1010 | 94,397,377 | 8.13 × 1010 | 12,550,029 | 3.62 × 1010 | 1.5 × 109 | 1.05 × 108 | 1.48 × 109 | 8.27 × 109 | 3.25 × 109 | 3.86 × 109 | 2.36 × 108 | |
std | 281.1232 | 6.05 × 109 | 37,699,246 | 1.8 × 1010 | 602,939 | 1.15 × 1010 | 2.78 × 108 | 29,972,887 | 6.95 × 108 | 2.84 × 109 | 1.13 × 109 | 1.84 × 109 | 82,068,331 | |
median | 2962.331 | 3.56 × 1010 | 62,044,309 | 5.63 × 1010 | 12,054,577 | 2.04 × 1010 | 9.97 × 108 | 61,665,741 | 7.91 × 108 | 3.09 × 109 | 1.69 × 109 | 7.36 × 108 | 1.96 × 108 | |
rank | 1 | 12 | 3 | 13 | 2 | 11 | 7 | 4 | 6 | 10 | 9 | 8 | 5 | |
C17-F13 | mean | 1340.1 | 2.05 × 1010 | 124,306 | 3.59 × 1010 | 13,820.12 | 8.4 × 109 | 79,029,047 | 201,080.5 | 2.97 × 108 | 4.87 × 108 | 15,429,091 | 3.97 × 108 | 34,568,913 |
best | 1333.781 | 1.18 × 1010 | 28,752.02 | 1.81 × 1010 | 7417.988 | 4.46 × 109 | 59,414,617 | 125,544.1 | 1.35 × 108 | 3.97 × 108 | 26,219.81 | 42,641.1 | 22,533,768 | |
worst | 1343.015 | 2.79 × 1010 | 273,649 | 5.16 × 1010 | 16,228.46 | 1.31 × 1010 | 89,739,751 | 313,654.4 | 7.48 × 108 | 6.66 × 108 | 52,008,316 | 1 × 109 | 46,202,757 | |
std | 4.398296 | 7.27 × 109 | 107,558.8 | 1.44 × 1010 | 4388.247 | 3.74 × 109 | 13,773,809 | 82,205.87 | 3.09 × 108 | 1.24 × 108 | 25,476,621 | 5.03 × 108 | 10,856,438 | |
median | 1341.801 | 2.11 × 1010 | 97,411.5 | 3.69 × 1010 | 15,817.02 | 8.03 × 109 | 83,480,911 | 182,561.7 | 1.53 × 108 | 4.43 × 108 | 4,840,914 | 2.93 × 108 | 34,769,564 | |
rank | 1 | 12 | 3 | 13 | 2 | 11 | 7 | 4 | 8 | 10 | 5 | 9 | 6 | |
C17-F14 | mean | 1429.458 | 21,629,558 | 1,019,175 | 40,326,460 | 1540.597 | 2,239,125 | 3,972,952 | 159,269.4 | 959,763.4 | 721,378.3 | 12,622,182 | 478,448.8 | 9,341,412 |
best | 1425.995 | 7,065,176 | 315,847.7 | 12,368,356 | 1529.06 | 591,649.7 | 3,517,514 | 100,976.4 | 74,947.42 | 594,856.7 | 2,861,955 | 172,016.9 | 4,596,836 | |
worst | 1431.939 | 42,342,695 | 2,427,168 | 81,648,276 | 1561.417 | 3,551,308 | 4,721,198 | 308,929.3 | 1,851,840 | 832,267.8 | 20,724,323 | 766,155.9 | 16,077,250 | |
std | 2.692311 | 15,290,806 | 985,718.2 | 30,267,916 | 15.13539 | 1,260,429 | 533,876.2 | 102,826.2 | 745,089.6 | 127,191.3 | 8,317,365 | 249,747.6 | 4,978,439 | |
median | 1429.95 | 18,555,180 | 666,841 | 33,644,603 | 1535.955 | 2,406,771 | 3,826,549 | 113,586 | 956,132.9 | 729,194.4 | 13,451,225 | 487,811.2 | 8,345,781 | |
rank | 1 | 12 | 7 | 13 | 2 | 8 | 9 | 3 | 6 | 5 | 11 | 4 | 10 | |
C17-F15 | mean | 1530.66 | 2.17 × 109 | 31,917.24 | 3.49 × 109 | 2139.059 | 1.42 × 109 | 8,268,173 | 101,399.5 | 4,957,875 | 58,803,800 | 1.65 × 108 | 9300.399 | 7,146,830 |
best | 1526.359 | 1.54 × 109 | 19,800.39 | 2.72 × 109 | 2028.222 | 4.88 × 108 | 762,321.9 | 42,127.59 | 35528 | 34,481,112 | 16,215.58 | 2567.105 | 2,428,749 | |
worst | 1532.953 | 2.84 × 109 | 58,561.65 | 4.13 × 109 | 2261.16 | 3.09 × 109 | 15,438,015 | 151,119.9 | 13,057,937 | 76,544,059 | 6.38 × 108 | 18,031.22 | 15,510,530 | |
std | 3.013514 | 6.32 × 108 | 18,454.03 | 6.41 × 108 | 126.8756 | 1.24 × 109 | 6,625,549 | 49,760.11 | 5,836,236 | 18,067,125 | 3.25 × 108 | 7059.598 | 5,942,171 | |
median | 1531.664 | 2.15 × 109 | 24,653.45 | 3.55 × 109 | 2133.428 | 1.05 × 109 | 8,436,177 | 106,175.3 | 3,369,019 | 62,095,015 | 9,951,567 | 8301.635 | 5,324,020 | |
rank | 1 | 12 | 4 | 13 | 2 | 11 | 8 | 5 | 6 | 9 | 10 | 3 | 7 | |
C17-F16 | mean | 2062.891 | 5581.005 | 3973.119 | 6665.639 | 2638.306 | 4212.793 | 4921.738 | 3117.378 | 3114.958 | 4131.227 | 3641.003 | 3128.543 | 3606.047 |
best | 1728.601 | 4843.246 | 3647.374 | 5095.094 | 2465.812 | 3691.913 | 4094.726 | 2941.736 | 2798.314 | 3806.364 | 3373.11 | 2808.407 | 3042.777 | |
worst | 2242.663 | 7043.283 | 4340.84 | 9804.628 | 2866.62 | 4493.657 | 5496.223 | 3348.255 | 3623.096 | 4333.498 | 4005.457 | 3509.443 | 4074.333 | |
std | 239.2227 | 1047.135 | 333.2 | 2222.094 | 183.478 | 370.2944 | 622.3757 | 173.8423 | 404.3577 | 234.4206 | 326.9663 | 379.38 | 461.5267 | |
median | 2140.15 | 5218.746 | 3952.13 | 5881.418 | 2610.396 | 4332.801 | 5048.001 | 3089.76 | 3019.212 | 4192.523 | 3592.723 | 3098.161 | 3653.54 | |
rank | 1 | 12 | 8 | 13 | 2 | 10 | 11 | 4 | 3 | 9 | 7 | 5 | 6 | |
C17-F17 | mean | 2021.151 | 6688.485 | 3302.53 | 9549.641 | 2469.247 | 3635.175 | 4115.561 | 2895.834 | 2810.65 | 3794.819 | 3520.846 | 3129.661 | 3324.428 |
best | 1900.43 | 5149.529 | 2912.359 | 7040.035 | 2391.62 | 2961.829 | 3704.817 | 2417.094 | 2698.009 | 3243.61 | 3124.039 | 2948.398 | 3112.599 | |
worst | 2138.267 | 8109.573 | 3761.455 | 12,292.24 | 2533.313 | 4035.847 | 4319.845 | 3292.78 | 3057.291 | 4131.374 | 3794.717 | 3425.605 | 3513.462 | |
std | 137.8644 | 1253.581 | 404.4641 | 2220.67 | 64.57045 | 478.8141 | 295.3164 | 373.1915 | 170.8534 | 403.7638 | 294.9474 | 232.6045 | 193.1295 | |
median | 2022.954 | 6747.419 | 3268.154 | 9433.143 | 2476.028 | 3771.512 | 4218.79 | 2936.732 | 2743.65 | 3902.147 | 3582.314 | 3072.321 | 3335.826 | |
rank | 1 | 12 | 6 | 13 | 2 | 9 | 11 | 4 | 3 | 10 | 8 | 5 | 7 | |
C17-F18 | mean | 1830.62 | 63,127,397 | 2,010,961 | 93,646,402 | 22,187.1 | 29,230,906 | 37,674,620 | 2,202,290 | 4,773,593 | 6,839,233 | 7,013,146 | 687,616.1 | 7,898,737 |
best | 1822.239 | 50,515,236 | 260,770.1 | 42,104,533 | 3423.859 | 2,627,757 | 10,203,343 | 1,297,604 | 910,388.1 | 4,703,720 | 3,316,065 | 293,249.4 | 2,830,469 | |
worst | 1841.673 | 74,439,111 | 3,683,100 | 1.3 × 108 | 33,031.5 | 83,511,815 | 68,196,717 | 3,428,095 | 9,521,953 | 9,506,696 | 13,105,733 | 1,127,379 | 18,988,156 | |
std | 8.365267 | 10,614,200 | 1,781,089 | 44,344,961 | 13,284.68 | 38,179,569 | 29,459,324 | 1,046,951 | 4,615,210 | 2,086,960 | 4,583,614 | 392,927.4 | 7,665,119 | |
median | 1829.285 | 63,777,620 | 2,049,987 | 1.01 × 108 | 26,146.52 | 15,392,026 | 36,149,211 | 2,041,730 | 4,331,015 | 6,573,259 | 5,815,394 | 664,918.1 | 4,888,162 | |
rank | 1 | 12 | 4 | 13 | 2 | 10 | 11 | 5 | 6 | 7 | 8 | 3 | 9 | |
C17-F19 | mean | 1925.185 | 2.27 × 109 | 216,902 | 3.2 × 109 | 2055.895 | 2.23 × 109 | 5,705,765 | 4,273,969 | 970,130.2 | 42,276,479 | 377,244.8 | 328,564.4 | 827,342.9 |
best | 1924.437 | 1.08 × 109 | 76,334.3 | 2.16 × 109 | 2004.909 | 8,154,682 | 858,452.1 | 3,253,382 | 475,008.9 | 35,891,244 | 217,067.2 | 2737.203 | 647,243.5 | |
worst | 1926.121 | 3.79 × 109 | 447,006 | 3.96 × 109 | 2081.044 | 6.51 × 109 | 13,447,694 | 5,300,348 | 1,491,455 | 53,685,590 | 826,313.6 | 820,181.3 | 1,120,630 | |
std | 0.812781 | 1.17 × 109 | 165,222.7 | 8.22 × 108 | 35.7305 | 2.99 × 109 | 5,556,410 | 858,370.3 | 436,484.8 | 8,135,776 | 307,601.2 | 400,334.2 | 229,452.6 | |
median | 1925.091 | 2.11 × 109 | 172,133.8 | 3.34 × 109 | 2068.813 | 1.2 × 109 | 4,258,458 | 4,271,074 | 957,028.3 | 39,764,541 | 232,799.3 | 245,669.4 | 770,749.2 | |
rank | 1 | 12 | 3 | 13 | 2 | 11 | 9 | 8 | 7 | 10 | 5 | 4 | 6 | |
C17-F20 | mean | 2160.172 | 3551.92 | 3081.871 | 3775.339 | 2576.451 | 3223.189 | 3486.468 | 3093.513 | 2546.611 | 3507.687 | 3729.636 | 3101.167 | 3000.111 |
best | 2104.423 | 3261.669 | 2609.066 | 3531.444 | 2331.268 | 2834.542 | 3227.925 | 2888.455 | 2368.84 | 3394.291 | 3515.385 | 2752.085 | 2935.112 | |
worst | 2323.891 | 3694.096 | 3519.588 | 3942.003 | 2804.926 | 3426.054 | 3967.93 | 3476.746 | 2745.71 | 3642.959 | 3955.542 | 3240.533 | 3098.743 | |
std | 112.1118 | 208.9768 | 401.3669 | 178.7862 | 209.3622 | 272.2615 | 345.9497 | 275.9436 | 195.8616 | 112.6999 | 185.5858 | 239.6098 | 75.4523 | |
median | 2106.186 | 3625.957 | 3099.416 | 3813.954 | 2584.806 | 3316.08 | 3375.009 | 3004.426 | 2535.946 | 3496.748 | 3723.807 | 3206.026 | 2983.294 | |
rank | 1 | 11 | 5 | 13 | 3 | 8 | 9 | 6 | 2 | 10 | 12 | 7 | 4 | |
C17-F21 | mean | 2314.895 | 2882.029 | 2683.598 | 2914.293 | 2427.113 | 2852.813 | 2845.191 | 2531.126 | 2487.319 | 2739.199 | 2756.115 | 2602.493 | 2678.824 |
best | 2309.045 | 2850.955 | 2580.935 | 2825.697 | 2410.875 | 2762.782 | 2748.623 | 2500.882 | 2440.923 | 2720.286 | 2695.833 | 2541.586 | 2658.424 | |
worst | 2329.683 | 2913.741 | 2843.263 | 2985.933 | 2446.777 | 2994.244 | 2924.65 | 2561.963 | 2522.542 | 2775.614 | 2788.092 | 2694.353 | 2694.385 | |
std | 10.1546 | 31.61239 | 116.3349 | 79.13377 | 18.72946 | 102.2821 | 77.95723 | 31.952 | 35.48531 | 26.72565 | 43.52908 | 69.35481 | 18.71277 | |
median | 2310.426 | 2881.71 | 2655.098 | 2922.772 | 2425.4 | 2827.113 | 2853.746 | 2530.829 | 2492.905 | 2730.448 | 2770.268 | 2587.017 | 2681.244 | |
rank | 1 | 12 | 7 | 13 | 2 | 11 | 10 | 4 | 3 | 8 | 9 | 5 | 6 | |
C17-F22 | mean | 3095.169 | 13,039.49 | 9826.909 | 14,101.28 | 4984.116 | 12,002.22 | 11,940.92 | 8030.367 | 7926.015 | 13,639.71 | 10,070.5 | 8665.845 | 7892.464 |
best | 2300 | 12,675.96 | 7743.335 | 13,787.62 | 2316.91 | 11,514.62 | 11,300.89 | 6733.052 | 6917.145 | 13,106.75 | 9686.142 | 7857.368 | 3745.8 | |
worst | 5480.678 | 13,528.23 | 11,335.17 | 14,662.71 | 7520.843 | 12,392.91 | 12,442.24 | 8996.724 | 8664.386 | 14,007.7 | 10,745.47 | 9334.598 | 11,904.18 | |
std | 1633.424 | 370.3083 | 1769.517 | 416.5127 | 2773.424 | 454.7955 | 493.6015 | 974.6443 | 753.354 | 395.6171 | 479.7048 | 655.9321 | 4664.853 | |
median | 2300 | 12,976.88 | 10,114.57 | 13,977.39 | 5049.356 | 12,050.67 | 12,010.28 | 8195.845 | 8061.265 | 13,722.19 | 9925.192 | 8735.706 | 7959.936 | |
rank | 1 | 11 | 7 | 13 | 2 | 10 | 9 | 5 | 4 | 12 | 8 | 6 | 3 | |
C17-F23 | mean | 2743.354 | 3650.732 | 3205.096 | 3714.708 | 2866.69 | 3585.901 | 3588.039 | 2950.211 | 2976.3 | 3196.58 | 4438.605 | 3277.074 | 3264.832 |
best | 2729.988 | 3582.13 | 3133.303 | 3675.628 | 2856.807 | 3406.452 | 3431.629 | 2915.367 | 2908.134 | 3122.479 | 4273.643 | 3218.486 | 3152.818 | |
worst | 2752.657 | 3734.727 | 3274.637 | 3747.738 | 2884.393 | 3873.109 | 3674.903 | 3010.714 | 3095.707 | 3254.528 | 4584.936 | 3325.963 | 3382.982 | |
std | 10.28788 | 68.28771 | 69.37518 | 31.17598 | 12.52007 | 227.7969 | 111.7276 | 46.44885 | 84.38634 | 56.19525 | 131.1238 | 58.53935 | 96.7561 | |
median | 2745.387 | 3643.036 | 3206.223 | 3717.733 | 2862.78 | 3532.023 | 3622.811 | 2937.381 | 2950.679 | 3204.656 | 4447.92 | 3281.923 | 3261.764 | |
rank | 1 | 11 | 6 | 12 | 2 | 9 | 10 | 3 | 4 | 5 | 13 | 8 | 7 | |
C17-F24 | mean | 2919.043 | 4010.998 | 3421.319 | 4243.979 | 3042.809 | 3837.26 | 3689.154 | 3101.868 | 3155.655 | 3366.463 | 4156.081 | 3378.972 | 3549.094 |
best | 2909.046 | 3793.635 | 3327.519 | 3829.967 | 3017.92 | 3756.028 | 3595.113 | 3069.759 | 3072.317 | 3300.91 | 4126.692 | 3243.297 | 3515.085 | |
worst | 2924.412 | 4494.655 | 3578.969 | 5255.436 | 3075.399 | 3956.391 | 3733.16 | 3132.026 | 3264.201 | 3416.819 | 4199.726 | 3512.298 | 3633.155 | |
std | 7.008951 | 334.167 | 112.0403 | 699.6368 | 26.28215 | 94.77305 | 66.02717 | 27.46018 | 82.16196 | 55.82139 | 34.99998 | 122.7717 | 57.76433 | |
median | 2921.358 | 3877.852 | 3389.395 | 3945.257 | 3038.958 | 3818.31 | 3714.171 | 3102.843 | 3143.051 | 3374.062 | 4148.953 | 3380.147 | 3524.068 | |
rank | 1 | 11 | 7 | 13 | 2 | 10 | 9 | 3 | 4 | 5 | 12 | 6 | 8 | |
C17-F25 | mean | 2983.145 | 7719.408 | 3147.649 | 10,531.67 | 3054.748 | 5532.008 | 3969.86 | 3043.705 | 3868.398 | 4154.663 | 4073.43 | 3099.795 | 3880.771 |
best | 2980.235 | 6438.194 | 3123.497 | 8547.655 | 3036.952 | 4583.589 | 3624.628 | 3014.213 | 3703.685 | 3744.2 | 3779.306 | 3061.562 | 3789.69 | |
worst | 2991.831 | 8529.623 | 3186.335 | 11,749.48 | 3069.982 | 6433.187 | 4229.797 | 3059.654 | 4040.107 | 4654.361 | 4629.915 | 3141.104 | 3983.99 | |
std | 5.947342 | 952.1256 | 27.72478 | 1545.063 | 13.98796 | 816.7002 | 264.6084 | 21.23968 | 180.3098 | 472.2477 | 410.9092 | 41.14992 | 82.36824 | |
median | 2980.257 | 7954.908 | 3140.382 | 10,914.77 | 3056.028 | 5555.628 | 4012.508 | 3050.476 | 3864.899 | 4110.046 | 3942.249 | 3098.256 | 3874.702 | |
rank | 1 | 12 | 5 | 13 | 3 | 11 | 8 | 2 | 6 | 10 | 9 | 4 | 7 | |
C17-F26 | mean | 3776.432 | 12,485.24 | 9857.964 | 13,316.65 | 3397.497 | 11,251.34 | 12,257.59 | 5477.849 | 6089.917 | 8800.124 | 10,340.32 | 7448.785 | 8179.371 |
best | 3748.807 | 12,285.6 | 9425.481 | 12,793.3 | 3226.788 | 9462.749 | 11,475.07 | 5063.435 | 5759.105 | 8117.119 | 10,039.97 | 6963.818 | 6593.561 | |
worst | 3793.643 | 12,649.4 | 10,292.56 | 14,122.22 | 3644.808 | 12,325.1 | 13,716.48 | 5703.791 | 6397.569 | 9439.729 | 10,681.34 | 7925.866 | 10,230.13 | |
std | 19.97732 | 172.6557 | 364.1075 | 593.2476 | 194.1546 | 1275.012 | 1021.872 | 296.969 | 342.6607 | 569.9985 | 274.3567 | 443.6232 | 1775.382 | |
median | 3781.639 | 12,502.99 | 9856.909 | 13,175.53 | 3359.195 | 11,608.75 | 11,919.41 | 5572.084 | 6101.497 | 8821.824 | 10,319.99 | 7452.727 | 7946.896 | |
rank | 2 | 12 | 8 | 13 | 1 | 10 | 11 | 3 | 4 | 7 | 9 | 5 | 6 | |
C17-F27 | mean | 3251.26 | 4558.072 | 3757.226 | 4717.941 | 3363.125 | 4482.345 | 4271.988 | 3345.037 | 3579.706 | 3740.707 | 7336.491 | 3584.334 | 4258.896 |
best | 3227.701 | 4286.485 | 3715.225 | 4397.922 | 3268.38 | 3875.972 | 3783.542 | 3308.467 | 3538.728 | 3574.105 | 7117.882 | 3358.875 | 4162.671 | |
worst | 3313.631 | 4750.001 | 3808.977 | 4953.475 | 3444.89 | 4909.919 | 4755.568 | 3401.624 | 3618.589 | 3892.62 | 7638.472 | 3799.69 | 4378.755 | |
std | 42.83953 | 208.2423 | 45.64993 | 270.5635 | 75.15709 | 460.5976 | 467.4793 | 40.91249 | 40.33389 | 144.8357 | 255.2247 | 204.2976 | 94.75696 | |
median | 3231.854 | 4597.9 | 3752.351 | 4760.183 | 3369.614 | 4571.744 | 4274.421 | 3335.029 | 3580.753 | 3748.051 | 7294.805 | 3589.385 | 4247.08 | |
rank | 1 | 11 | 7 | 12 | 3 | 10 | 9 | 2 | 4 | 6 | 13 | 5 | 8 | |
C17-F28 | mean | 3258.849 | 7875.995 | 3541.328 | 9941.846 | 3337.808 | 6631.38 | 4578.289 | 3281.782 | 4224.934 | 4939.068 | 4779.577 | 3776.84 | 4762.924 |
best | 3258.849 | 7154.555 | 3471.646 | 8859.818 | 3306.732 | 5466.288 | 4063.599 | 3263.28 | 3996 | 4413.751 | 4728.187 | 3507.802 | 4548.706 | |
worst | 3258.849 | 9699.368 | 3617.366 | 12,815.67 | 3375.969 | 7830.362 | 4775.276 | 3297.805 | 4512.748 | 5401.291 | 4880.971 | 4213.028 | 4921.505 | |
std | 0 | 1258.68 | 73.85199 | 1971.415 | 34.88036 | 1231.024 | 353.5291 | 17.38953 | 247.5649 | 416.8153 | 71.31116 | 313.4874 | 185.5852 | |
median | 3258.849 | 7325.028 | 3538.151 | 9045.946 | 3334.266 | 6614.436 | 4737.14 | 3283.021 | 4195.493 | 4970.615 | 4754.575 | 3693.265 | 4790.743 | |
rank | 1 | 12 | 4 | 13 | 3 | 11 | 7 | 2 | 6 | 10 | 9 | 5 | 8 | |
C17-F29 | mean | 3263.038 | 12,013.08 | 5155.336 | 16,966.75 | 3965.861 | 6335.854 | 8144.708 | 4593.855 | 4625.547 | 6027.632 | 7414.208 | 4596.644 | 5701.722 |
best | 3247.132 | 8097.379 | 5034.352 | 9211.089 | 3662.325 | 5959.515 | 5651.218 | 4217.754 | 4449.501 | 5261.059 | 6198.558 | 4399.641 | 5441.194 | |
worst | 3278.787 | 16,305.79 | 5272.736 | 26,537.5 | 4170.548 | 6783.875 | 10,517.49 | 5099.099 | 4881.193 | 6868.259 | 9561.805 | 4667.765 | 6212.377 | |
std | 17.92966 | 3881.513 | 100.1932 | 7927.577 | 236.6456 | 351.4129 | 2058.726 | 378.9936 | 203.6804 | 780.7956 | 1556.614 | 134.9533 | 371.68 | |
median | 3263.116 | 11,824.57 | 5157.127 | 16,059.22 | 4015.285 | 6300.014 | 8205.061 | 4529.282 | 4585.747 | 5990.604 | 6948.234 | 4659.585 | 5576.659 | |
rank | 1 | 12 | 6 | 13 | 2 | 9 | 11 | 3 | 5 | 8 | 10 | 4 | 7 | |
C17-F30 | mean | 623,575.2 | 2.73 × 109 | 18,352,940 | 4.58 × 109 | 1,487,669 | 1.38 × 109 | 1.32 × 108 | 58,942,891 | 1.16 × 108 | 2.51 × 108 | 1.54 × 108 | 4,120,584 | 48,887,890 |
best | 582,411.6 | 2.11 × 109 | 11,254,579 | 2.81 × 109 | 1,154,970 | 1.7 × 108 | 89,570,536 | 53,274,378 | 56,426,470 | 1.75 × 108 | 1.18 × 108 | 2,907,481 | 39,468,838 | |
worst | 655,637.4 | 3.71 × 109 | 25,121,412 | 7.19 × 109 | 2,358,780 | 2.81 × 109 | 1.83 × 108 | 67,789,140 | 1.73 × 108 | 3.18 × 108 | 2.02 × 108 | 5,692,794 | 68,578,838 | |
std | 33,550.87 | 7.17 × 108 | 6,997,250 | 1.94 × 109 | 599,306 | 1.4 × 109 | 48,032,660 | 6,469,130 | 60,378,267 | 61,457,449 | 36,165,698 | 1,416,298 | 13,842,435 | |
median | 628,125.9 | 2.56 × 109 | 18,517,886 | 4.16 × 109 | 1,218,463 | 1.28 × 109 | 1.29 × 108 | 57,354,023 | 1.18 × 108 | 2.56 × 108 | 1.48 × 108 | 3,941,030 | 43,751,942 | |
rank | 1 | 12 | 4 | 13 | 2 | 11 | 8 | 6 | 7 | 10 | 9 | 3 | 5 | |
Sum rank | 30 | 335 | 166 | 367 | 63 | 294 | 269 | 112 | 144 | 248 | 254 | 150 | 207 | |
Mean rank | 1.034483 | 11.55172 | 5.724138 | 12.65517 | 2.172414 | 10.13793 | 9.275862 | 3.862069 | 4.965517 | 8.551724 | 8.758621 | 5.172414 | 7.137931 | |
Total rank | 1 | 12 | 6 | 13 | 2 | 11 | 10 | 3 | 4 | 8 | 9 | 5 | 7 |
Optimization results of CEC 2017 test suite (dimension = 100); background color has been used in order to make the table more reader-friendly and to separate the results of benchmark functions from each other; The best results are specified using bold.
POA | WSO | AVOA | RSA | MPA | TSA | WOA | MVO | GWO | TLBO | GSA | PSO | GA | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C17-F1 | mean | 100 | 1.39 × 1011 | 3.19 × 109 | 1.94 × 1011 | 4.33 × 108 | 1.05 × 1011 | 5.23 × 1010 | 54,852,229 | 4.76 × 1010 | 7.6 × 1010 | 1.14 × 1011 | 1.67 × 1010 | 4.68 × 1010 |
best | 100 | 1.36 × 1011 | 1.55 × 109 | 1.91 × 1011 | 3.28 × 108 | 9.25 × 1010 | 4.94 × 1010 | 45,706,387 | 4.13 × 1010 | 7.24 × 1010 | 1.04 × 1011 | 1.12 × 1010 | 4.43 × 1010 | |
worst | 100 | 1.43 × 1011 | 4.59 × 109 | 1.96 × 1011 | 5.47 × 108 | 1.17 × 1011 | 5.85 × 1010 | 64,235,296 | 5.39 × 1010 | 8.38 × 1010 | 1.21 × 1011 | 2.27 × 1010 | 5.28 × 1010 | |
std | 1.19 × 10−14 | 2.93 × 109 | 1.28 × 109 | 2.3 × 109 | 1.09 × 108 | 1.06 × 1010 | 4.32 × 109 | 9,293,959 | 6.15 × 109 | 5.41 × 109 | 7.44 × 109 | 6.48 × 109 | 4.2 × 109 | |
median | 100 | 1.39 × 1011 | 3.31 × 109 | 1.95 × 1011 | 4.29 × 108 | 1.05 × 1011 | 5.06 × 1010 | 54,733,616 | 4.77 × 1010 | 7.4 × 1010 | 1.14 × 1011 | 1.64 × 1010 | 4.5 × 1010 | |
rank | 1 | 12 | 4 | 13 | 3 | 10 | 8 | 2 | 7 | 9 | 11 | 5 | 6 | |
C17-F3 | mean | 300 | 356,822.5 | 272,039.4 | 268,843.8 | 131,575.1 | 302,970 | 657,547.9 | 388,370.4 | 306,828.3 | 246,796 | 286,153.2 | 450,679.2 | 481,038.8 |
best | 300 | 325,159.2 | 265,681.1 | 259,332.9 | 100,728.8 | 242,793.7 | 575,512.9 | 322,609.5 | 280,769.3 | 231,497.7 | 264,862.3 | 341,428.2 | 461,303.6 | |
worst | 300 | 373,192.5 | 278,132.7 | 274,437.1 | 159,198.2 | 345,991.9 | 761,479.5 | 464,924.1 | 336,002.8 | 261,138.9 | 313,191.9 | 632,641.2 | 496,677.8 | |
std | 0 | 23,069.08 | 5405.063 | 7264.194 | 26,086.31 | 44888 | 82,337.72 | 74,421.55 | 30,350.08 | 12,441.73 | 20,597.91 | 138,498.8 | 16,046.35 | |
median | 300 | 364,469 | 272,171.8 | 270,802.5 | 133,186.8 | 311,547.2 | 646,599.6 | 382,974 | 305,270.6 | 247,273.7 | 283,279.4 | 414,323.8 | 483,086.9 | |
rank | 1 | 9 | 5 | 4 | 2 | 7 | 13 | 10 | 8 | 3 | 6 | 11 | 12 | |
C17-F4 | mean | 602.1722 | 37,200.13 | 1395.351 | 62,656.05 | 949.0996 | 13,432.06 | 9212.415 | 733.9504 | 3820.981 | 9046.233 | 28,507.72 | 2159.921 | 7767.034 |
best | 592.0676 | 34,244.38 | 1188.769 | 56,805.13 | 853.8108 | 8822.324 | 7863.571 | 686.5776 | 2959.035 | 8625.057 | 22,690.11 | 1346.902 | 7344.033 | |
worst | 612.2769 | 40,775.07 | 1525.893 | 69,800.05 | 1048.065 | 17,828.22 | 10,104.17 | 782.7016 | 5694.419 | 9775.514 | 32,247.61 | 2697.897 | 8247.69 | |
std | 11.98393 | 2884.073 | 157.7992 | 5534.342 | 96.64646 | 3822.612 | 978.9794 | 41.15435 | 1294.375 | 562.1131 | 4740.337 | 598.0332 | 430.9479 | |
median | 602.1722 | 36,890.53 | 1433.37 | 62,009.52 | 947.2614 | 13,538.85 | 9440.961 | 733.2611 | 3315.236 | 8892.181 | 29,546.57 | 2297.443 | 7738.206 | |
rank | 1 | 12 | 4 | 13 | 3 | 10 | 9 | 2 | 6 | 8 | 11 | 5 | 7 | |
C17-F5 | mean | 512.9345 | 1713.456 | 1158.356 | 1688.389 | 1085.416 | 1839.181 | 1587.534 | 1094.013 | 1050.695 | 1616.155 | 1176.387 | 1240.032 | 1378.034 |
best | 510.9445 | 1698.059 | 1148.207 | 1659.418 | 980.744 | 1818.63 | 1507.616 | 1004.061 | 1003.78 | 1593.486 | 1148.27 | 1158.131 | 1257.35 | |
worst | 514.9244 | 1722.799 | 1165.849 | 1716.686 | 1156.185 | 1863.108 | 1712.415 | 1151.854 | 1090.71 | 1640.148 | 1202.516 | 1381.78 | 1450.591 | |
std | 1.865752 | 11.03134 | 7.635601 | 29.64844 | 86.76592 | 21.19345 | 91.26585 | 68.35644 | 38.92925 | 19.58371 | 29.03695 | 107.9789 | 89.24287 | |
median | 512.9345 | 1716.483 | 1159.684 | 1688.726 | 1102.367 | 1837.493 | 1565.052 | 1110.068 | 1054.144 | 1615.493 | 1177.382 | 1210.109 | 1402.098 | |
rank | 1 | 12 | 5 | 11 | 3 | 13 | 9 | 4 | 2 | 10 | 6 | 7 | 8 | |
C17-F6 | mean | 600 | 686.2561 | 650.1087 | 684.8479 | 630.2372 | 689.9604 | 684.22 | 660.4596 | 632.5629 | 665.8413 | 651.8302 | 649.7509 | 651.0804 |
best | 600 | 684.0572 | 646.8065 | 680.8364 | 627.1287 | 679.9345 | 676.264 | 654.9711 | 628.4932 | 658.6757 | 649.7166 | 643.883 | 645.0896 | |
worst | 600 | 688.314 | 653.57 | 687.2264 | 635.5005 | 696.8682 | 698.2933 | 665.5673 | 637.7053 | 670.1556 | 655.2582 | 654.5349 | 655.6 | |
std | 0 | 1.973412 | 2.863424 | 2.900847 | 4.076006 | 8.394353 | 10.15573 | 4.674826 | 4.103813 | 5.638744 | 2.510844 | 5.196738 | 5.435079 | |
median | 600 | 686.3265 | 650.0291 | 685.6644 | 629.1598 | 691.5195 | 681.1614 | 660.6501 | 632.0266 | 667.2669 | 651.173 | 650.2929 | 651.8159 | |
rank | 1 | 12 | 5 | 11 | 2 | 13 | 10 | 8 | 3 | 9 | 7 | 4 | 6 | |
C17-F7 | mean | 811.392 | 3078.549 | 2647.876 | 3172.9 | 1642.885 | 2936.941 | 3055.083 | 1776.654 | 1789.226 | 2661.299 | 2681.923 | 2157.269 | 2236.865 |
best | 810.0205 | 3007.362 | 2517.822 | 3098.601 | 1595.363 | 2790.616 | 2956.24 | 1643.858 | 1635.004 | 2543.213 | 2575.234 | 1939.203 | 2154.734 | |
worst | 813.1726 | 3162.245 | 2757.1 | 3235.912 | 1709.012 | 3075.254 | 3198.987 | 1877.404 | 1903.283 | 2758.246 | 2858.635 | 2254.415 | 2416.55 | |
std | 1.500732 | 65.36608 | 123.0115 | 60.62822 | 50.50046 | 131.9066 | 114.421 | 99.82659 | 115.2611 | 91.24165 | 126.9898 | 153.3934 | 124.6292 | |
median | 811.1874 | 3072.294 | 2658.291 | 3178.543 | 1633.582 | 2940.946 | 3032.553 | 1792.676 | 1809.308 | 2671.868 | 2646.912 | 2217.73 | 2188.088 | |
rank | 1 | 12 | 7 | 13 | 2 | 10 | 11 | 3 | 4 | 8 | 9 | 5 | 6 | |
C17-F8 | mean | 812.437 | 2111.514 | 1558.999 | 2155.866 | 1311.287 | 2093.096 | 2028.263 | 1330.475 | 1380.248 | 1975.447 | 1630.458 | 1533.499 | 1796.9 |
best | 808.9546 | 2070.756 | 1514.017 | 2136.282 | 1172.108 | 2037.043 | 1865.023 | 1206.239 | 1294.809 | 1922.602 | 1563.68 | 1500.057 | 1755.117 | |
worst | 816.9143 | 2160.449 | 1581.305 | 2168.607 | 1397.316 | 2164.109 | 2153.686 | 1478.289 | 1494.139 | 2018.868 | 1736.527 | 1610.497 | 1838.762 | |
std | 3.490503 | 39.46893 | 31.82517 | 14.21747 | 101.6924 | 62.6837 | 151.6583 | 115.3078 | 92.24407 | 42.9253 | 79.30347 | 53.02921 | 36.57804 | |
median | 811.9395 | 2107.427 | 1570.336 | 2159.287 | 1337.862 | 2085.616 | 2047.173 | 1318.687 | 1366.021 | 1980.159 | 1610.813 | 1511.721 | 1796.86 | |
rank | 1 | 12 | 6 | 13 | 2 | 11 | 10 | 3 | 4 | 9 | 7 | 5 | 8 | |
C17-F9 | mean | 900 | 72673 | 21,463.42 | 62,321.68 | 18,200.53 | 97,087.11 | 61,930.12 | 47,807.54 | 29,078.92 | 60,047.03 | 19,113.92 | 26,597.15 | 37,150.16 |
best | 900 | 64,890.1 | 17,889.47 | 60,247.62 | 16,949.52 | 79,614.15 | 48,186.59 | 40,332.69 | 18,044.02 | 57,514.84 | 17,799.99 | 22,511.34 | 33,658.16 | |
worst | 900 | 83,934.4 | 24,142.23 | 64,020.16 | 18,766.82 | 121,069 | 78,018.06 | 54,357.12 | 39,496.25 | 61,393.32 | 20,131.39 | 29,609.34 | 41,831.24 | |
std | 9.53 × 10−14 | 8439.843 | 2676.226 | 1688.451 | 863.4577 | 17,876.94 | 15,298.97 | 5930.986 | 10,756.32 | 1817.986 | 1001.368 | 3241.433 | 3525.3 | |
median | 900 | 70,933.74 | 21,910.99 | 62,509.46 | 18,542.9 | 93,832.65 | 60,757.92 | 48,270.17 | 29,387.71 | 60,639.98 | 19,262.15 | 27,133.95 | 36,555.61 | |
rank | 1 | 12 | 4 | 11 | 2 | 13 | 10 | 8 | 6 | 9 | 3 | 5 | 7 | |
C17-F10 | mean | 11,023.04 | 26,654.96 | 15,020.3 | 27,732.34 | 13,324.39 | 25,915.94 | 25,070.06 | 15,849.77 | 14,388.1 | 27,740.18 | 16,039.68 | 15,915.96 | 23,258.07 |
best | 9625.608 | 26,353.3 | 12,995.83 | 27,038.62 | 12,781.35 | 25,353.33 | 24,414.69 | 15,359.08 | 13,258.65 | 26,507.18 | 14,606.66 | 14,564.86 | 22,622.29 | |
worst | 11,858.81 | 27,030.57 | 16,910.95 | 28,251.05 | 14,141.58 | 26,715.13 | 26,344.54 | 16,388.95 | 14,902.23 | 28,667.37 | 16,907.43 | 16,756.64 | 23,837.44 | |
std | 995.114 | 320.0939 | 1798.552 | 577.2643 | 634.1048 | 654.8937 | 901.4097 | 496.5617 | 784.6955 | 931.1423 | 1107.631 | 971.114 | 511.2961 | |
median | 11,303.87 | 26,617.99 | 15,087.21 | 27,819.85 | 13,187.32 | 25,797.65 | 24,760.5 | 15,825.52 | 14,695.77 | 27,893.09 | 16,322.32 | 16,171.17 | 23,286.27 | |
rank | 1 | 11 | 4 | 12 | 2 | 10 | 9 | 5 | 3 | 13 | 7 | 6 | 8 | |
C17-F11 | mean | 1162.329 | 134,612.3 | 52,588.01 | 168,880.7 | 4126.681 | 53,605.52 | 170,451.2 | 3961.419 | 71,430.16 | 58,834.42 | 141,339.7 | 42,727.78 | 113,994.6 |
best | 1139.568 | 104,512.5 | 47,266.62 | 129,243.6 | 3290.22 | 24,535.81 | 99,263.93 | 3471.134 | 59,361.4 | 49,651.74 | 117,805.8 | 19,535.8 | 87,032.77 | |
worst | 1220.662 | 156,634.3 | 62,800.07 | 240,550.6 | 4901.723 | 76,617.73 | 274,712.4 | 4194.313 | 80,462.48 | 74,953.97 | 164,872.9 | 87,137.65 | 157,108.2 | |
std | 40.09338 | 23,016.42 | 7379.838 | 51,504.53 | 711.6997 | 22,173.17 | 83,830.02 | 340.274 | 9275.106 | 11,393.93 | 19,966.49 | 31,050.73 | 31,530.95 | |
median | 1144.542 | 138,651.1 | 50,142.67 | 152,864.4 | 4157.391 | 56,634.27 | 153,914.3 | 4090.115 | 72,948.37 | 55,365.98 | 141,340.1 | 32,118.83 | 105,918.8 | |
rank | 1 | 10 | 5 | 12 | 3 | 6 | 13 | 2 | 8 | 7 | 11 | 4 | 9 | |
C17-F12 | mean | 5974.805 | 8.62 × 1010 | 5.38 × 108 | 1.4 × 1011 | 2.13 × 108 | 4.64 × 1010 | 1.08 × 1010 | 2.72 × 108 | 9.35 × 109 | 1.79 × 1010 | 5.46 × 1010 | 8.25 × 109 | 1.01 × 1010 |
best | 5383.905 | 6.13 × 1010 | 2.85 × 108 | 1.05 × 1011 | 1.19 × 108 | 2.38 × 1010 | 8.75 × 109 | 1.73 × 108 | 6.48 × 109 | 1.41 × 1010 | 4.74 × 1010 | 1.07 × 109 | 9.19 × 109 | |
worst | 6570.199 | 9.61 × 1010 | 8.59 × 108 | 1.63 × 1011 | 2.55 × 108 | 7.7 × 1010 | 1.23 × 1010 | 4.27 × 108 | 1.11 × 1010 | 2.47 × 1010 | 6.42 × 1010 | 1.57 × 1010 | 1.19 × 1010 | |
std | 507.8693 | 1.71 × 1010 | 2.54 × 108 | 2.73 × 1010 | 65,009,208 | 2.28 × 1010 | 1.54 × 109 | 1.15 × 108 | 2.06 × 109 | 4.98 × 109 | 7.21 × 109 | 6.83 × 109 | 1.27 × 109 | |
median | 5972.559 | 9.37 × 1010 | 5.04 × 108 | 1.47 × 1011 | 2.39 × 108 | 4.25 × 1010 | 1.1 × 1010 | 2.44 × 108 | 9.9 × 109 | 1.65 × 1010 | 5.34 × 1010 | 8.12 × 109 | 9.62 × 109 | |
rank | 1 | 12 | 4 | 13 | 2 | 10 | 8 | 3 | 6 | 9 | 11 | 5 | 7 | |
C17-F13 | mean | 1407.28 | 2.28 × 1010 | 80,574.27 | 3.49 × 1010 | 79,471.01 | 1.75 × 1010 | 4.27 × 108 | 289,792.7 | 7.74 × 108 | 2.3 × 109 | 7.14 × 109 | 1.44 × 109 | 1.43 × 108 |
best | 1371.145 | 1.98 × 1010 | 56,979.61 | 2.7 × 1010 | 34,182.78 | 1.24 × 1010 | 3.04 × 108 | 255,398.6 | 66,792,621 | 1.59 × 109 | 4.39 × 109 | 1.59 × 108 | 1.12 × 108 | |
worst | 1439.935 | 2.53 × 1010 | 109,768.5 | 3.95 × 1010 | 197,022.9 | 2.09 × 1010 | 5.78 × 108 | 337,817.3 | 2.05 × 109 | 2.79 × 109 | 9.17 × 109 | 2.61 × 109 | 1.72 × 108 | |
std | 35.69163 | 2.91 × 109 | 22,990.78 | 5.96 × 109 | 80968 | 3.7 × 109 | 1.45 × 108 | 37,057.41 | 9.39 × 108 | 5.59 × 108 | 2.05 × 109 | 1.24 × 109 | 31,895,575 | |
median | 1409.02 | 2.3 × 1010 | 77,774.48 | 3.65 × 1010 | 43,339.18 | 1.83 × 1010 | 4.14 × 108 | 282,977.3 | 4.92 × 108 | 2.42 × 109 | 7.5 × 109 | 1.5 × 109 | 1.44 × 108 | |
rank | 1 | 12 | 3 | 13 | 2 | 11 | 6 | 4 | 7 | 9 | 10 | 8 | 5 | |
C17-F14 | mean | 1467.509 | 37,197,454 | 5,466,685 | 65,255,522 | 74,687.09 | 7,286,846 | 11,918,194 | 2,485,352 | 7,878,524 | 11,393,244 | 9,418,373 | 667,883.9 | 8,603,616 |
best | 1458.803 | 32,123,384 | 3,315,151 | 59,516,459 | 21,503.76 | 3,309,974 | 6,860,812 | 750,232.9 | 4,983,390 | 8,488,751 | 7,259,554 | 317,528.2 | 4,814,013 | |
worst | 1472.733 | 42,492,312 | 9,074,791 | 71,434,249 | 158,404.6 | 14,217,196 | 16,291,558 | 3,420,974 | 11,810,971 | 14,559,371 | 14,124,953 | 1,386,468 | 12,674,056 | |
std | 6.209197 | 4,677,964 | 2,605,972 | 5,879,918 | 62,965.71 | 4,935,970 | 3,982,571 | 1,222,873 | 3,073,855 | 3,260,247 | 3,259,370 | 499,763.2 | 3,360,478 | |
median | 1469.25 | 37,087,060 | 4,738,399 | 65,035,690 | 59,419.98 | 5,810,108 | 12,260,204 | 2,885,101 | 7,359,867 | 11,262,427 | 8,144,493 | 483,769.8 | 8,463,198 | |
rank | 1 | 12 | 5 | 13 | 2 | 6 | 11 | 4 | 7 | 10 | 9 | 3 | 8 | |
C17-F15 | mean | 1609.893 | 1.26 × 1010 | 69,370.46 | 1.93 × 1010 | 46,148.1 | 9.88 × 109 | 57,422,101 | 103,903 | 4.11 × 108 | 9.76 × 108 | 1.02 × 109 | 2.73 × 108 | 10,394,502 |
best | 1551.154 | 1.17 × 1010 | 56,780.13 | 1.38 × 1010 | 13,517.63 | 2.05 × 108 | 31,981,638 | 71,184.3 | 26,937,678 | 3.26 × 108 | 4.07 × 108 | 50,630.11 | 6,702,420 | |
worst | 1652.294 | 1.42 × 1010 | 87,025.88 | 2.4 × 1010 | 69,938.59 | 1.85 × 1010 | 1.1 × 108 | 152,770.1 | 1.23 × 109 | 2.08 × 109 | 1.3 × 109 | 1.08 × 109 | 17,711,015 | |
std | 45.3586 | 1.12 × 109 | 14,851.33 | 5.23 × 109 | 24,462.7 | 8.16 × 109 | 36,744,160 | 36,893.9 | 5.72 × 108 | 7.92 × 108 | 4.25 × 108 | 5.52 × 108 | 5,136,228 | |
median | 1618.063 | 1.23 × 1010 | 66,837.92 | 1.97 × 1010 | 50,568.08 | 1.04 × 1010 | 43,686,519 | 95,828.73 | 1.93 × 108 | 7.47 × 108 | 1.18 × 109 | 7,071,707 | 8,582,287 | |
rank | 1 | 12 | 3 | 13 | 2 | 11 | 6 | 4 | 8 | 9 | 10 | 7 | 5 | |
C17-F16 | mean | 2711.795 | 16,012.75 | 6339.766 | 19,049.54 | 5020.833 | 12,428.05 | 13,797.85 | 5899.538 | 5494.114 | 9913.052 | 9553.895 | 5807.791 | 9132.825 |
best | 2171.69 | 15,028.6 | 5463.708 | 15,158.15 | 4904.968 | 10,251.41 | 11,324.27 | 5278.217 | 4983.364 | 9463.009 | 8315.094 | 5671.273 | 8374.525 | |
worst | 3397.326 | 16,418.68 | 6926.982 | 21,180.98 | 5123.19 | 14,905.49 | 15,213.89 | 6292.986 | 5983.629 | 10,735.61 | 10,910.6 | 5919.126 | 9778.948 | |
std | 523.7732 | 679.046 | 642.8286 | 2818.137 | 118.6712 | 1964.904 | 1809.969 | 491.0011 | 564.8153 | 614.6226 | 1208.589 | 105.6406 | 647.8327 | |
median | 2639.081 | 16,301.87 | 6484.187 | 19,929.51 | 5027.588 | 12,277.66 | 14,326.62 | 6013.474 | 5504.731 | 9726.794 | 9494.942 | 5820.383 | 9188.914 | |
rank | 1 | 12 | 6 | 13 | 2 | 10 | 11 | 5 | 3 | 9 | 8 | 4 | 7 | |
C17-F17 | mean | 2716.564 | 3,460,690 | 5278.977 | 6,807,697 | 4297.894 | 179,834.7 | 14,457.77 | 4560.73 | 5000.734 | 7657.1 | 38,547.08 | 5486.593 | 6354.464 |
best | 2275.021 | 1,014,586 | 5040.925 | 1,845,539 | 4049.324 | 8854.736 | 9018.615 | 4149.113 | 4121.38 | 7508 | 25,526.42 | 5266.846 | 6299.009 | |
worst | 3429.127 | 7,873,139 | 5666.053 | 15,664,206 | 4526.101 | 476,948.7 | 24,245.76 | 4922.177 | 6445.983 | 7893.557 | 62,324.99 | 5629.111 | 6460.004 | |
std | 528.3898 | 3,320,761 | 301.2767 | 6,677,440 | 227.8255 | 210,069.5 | 7045.023 | 392.0188 | 1070.156 | 175.195 | 16,751.95 | 158.8681 | 73.75885 | |
median | 2581.054 | 2,477,518 | 5204.466 | 4,860,521 | 4308.075 | 116,767.6 | 12,283.34 | 4585.815 | 4717.786 | 7613.422 | 33,168.45 | 5525.207 | 6329.422 | |
rank | 1 | 12 | 5 | 13 | 2 | 11 | 9 | 3 | 4 | 8 | 10 | 6 | 7 | |
C17-F18 | mean | 1903.746 | 47,894,555 | 2,310,227 | 84,518,490 | 190,659.1 | 12,221,836 | 9,843,795 | 4,025,843 | 8,988,758 | 13,289,966 | 9,641,892 | 5,279,389 | 4,952,111 |
best | 1881.15 | 21,698,211 | 1,148,961 | 32,805,132 | 133,021.7 | 4,578,030 | 7,321,990 | 2,981,556 | 2,830,828 | 9,793,146 | 4,445,340 | 3,260,604 | 3,970,706 | |
worst | 1919.921 | 86,612,495 | 3,652,415 | 1.55 × 108 | 343,343.4 | 24,974,816 | 11,661,348 | 6,762,303 | 14,525,423 | 18,785,306 | 21,434,676 | 7,605,804 | 7,169,003 | |
std | 19.90425 | 28,481,148 | 1,164,994 | 52,706,461 | 104,871 | 9,439,239 | 2,031,181 | 1,881,089 | 4,942,116 | 3,967,275 | 8,225,806 | 2,073,772 | 1,546,019 | |
median | 1906.955 | 41,633,757 | 2,219,766 | 75,362,668 | 143,135.6 | 9,667,250 | 10,195,921 | 3,179,757 | 9,299,390 | 12,290,706 | 6,343,776 | 5,125,574 | 4,334,367 | |
rank | 1 | 12 | 3 | 13 | 2 | 10 | 9 | 4 | 7 | 11 | 8 | 6 | 5 | |
C17-F19 | mean | 1972.839 | 1.04 × 1010 | 2,362,491 | 1.83 × 1010 | 230,108.6 | 4.14 × 109 | 1.1 × 108 | 13,654,870 | 2.96 × 108 | 5.49 × 108 | 1.3 × 109 | 2.21 × 108 | 10,503,303 |
best | 1967.139 | 9.2 × 109 | 904,673.4 | 1.34 × 1010 | 48,684.43 | 1.84 × 109 | 43,630,380 | 7,964,383 | 2,348,641 | 2.38 × 108 | 2.33 × 108 | 36,773,561 | 5,362,045 | |
worst | 1977.869 | 1.23 × 1010 | 4,348,722 | 2.28 × 1010 | 389,547.4 | 8.23 × 109 | 1.85 × 108 | 21,704,035 | 8.9 × 108 | 1.26 × 109 | 2.45 × 109 | 4.79 × 108 | 18,995,339 | |
std | 4.659759 | 1.43 × 109 | 1,495,119 | 4 × 109 | 145,313.2 | 2.9 × 109 | 67,427,821 | 6,966,481 | 4.26 × 108 | 4.94 × 108 | 1.13 × 109 | 2.2 × 108 | 6,213,630 | |
median | 1973.174 | 1.01 × 1010 | 2,098,285 | 1.86 × 1010 | 241,101.2 | 3.25 × 109 | 1.05 × 108 | 12,475,530 | 1.46 × 108 | 3.48 × 108 | 1.25 × 109 | 1.85 × 108 | 8,827,915 | |
rank | 1 | 12 | 3 | 13 | 2 | 11 | 6 | 5 | 8 | 9 | 10 | 7 | 4 | |
C17-F20 | mean | 3192.04 | 6567.794 | 5653.156 | 6776.389 | 4267.781 | 6355.055 | 6365.416 | 5352.871 | 5569.311 | 6533.95 | 5772.471 | 4990.757 | 5732.389 |
best | 2806.762 | 6354.057 | 5417.394 | 6712.36 | 4167.712 | 5784.031 | 6063.448 | 5126.343 | 4577.831 | 5811.094 | 5463.899 | 4325.736 | 5172.25 | |
worst | 3662.121 | 6787.248 | 5871.457 | 6910.434 | 4349.534 | 7064.472 | 6720.677 | 5744.821 | 6391.821 | 6826.52 | 5934.124 | 5777.557 | 6089.943 | |
std | 451.2632 | 195.8611 | 240.0771 | 93.26987 | 77.59644 | 573.7388 | 296.3053 | 281.3659 | 910.8455 | 496.684 | 216.9234 | 643.6342 | 451.9964 | |
median | 3149.639 | 6564.936 | 5661.887 | 6741.381 | 4276.94 | 6285.858 | 6338.769 | 5270.159 | 5653.796 | 6749.093 | 5845.931 | 4929.869 | 5833.682 | |
rank | 1 | 12 | 6 | 13 | 2 | 9 | 10 | 4 | 5 | 11 | 8 | 3 | 7 | |
C17-F21 | mean | 2342.155 | 3936.255 | 3428.272 | 4037.847 | 2744.718 | 3800.888 | 3885.327 | 3076.144 | 2861.886 | 3461.987 | 4286.766 | 3358.879 | 3224.172 |
best | 2338.689 | 3897.727 | 3253.086 | 3974.827 | 2708.006 | 3681.123 | 3637.319 | 3018.663 | 2793.484 | 3329.061 | 3827.764 | 3203.068 | 3194.14 | |
worst | 2346.015 | 3994.366 | 3542.899 | 4085.116 | 2773.289 | 3882.291 | 4076.884 | 3183.716 | 2907.116 | 3613.682 | 4655.793 | 3653.096 | 3265.66 | |
std | 3.460098 | 47.67605 | 128.2378 | 49.14714 | 28.36417 | 101.2622 | 202.301 | 75.94341 | 49.60032 | 124.534 | 354.7142 | 209.5381 | 31.7634 | |
median | 2341.959 | 3926.465 | 3458.551 | 4045.723 | 2748.788 | 3820.069 | 3913.553 | 3051.099 | 2873.472 | 3452.602 | 4331.754 | 3289.676 | 3218.445 | |
rank | 1 | 11 | 7 | 12 | 2 | 9 | 10 | 4 | 3 | 8 | 13 | 6 | 5 | |
C17-F22 | mean | 11739 | 28,172.59 | 18,735.12 | 29,538.13 | 17,455.15 | 27,345.2 | 25,999.83 | 16,295.9 | 21,263.1 | 29,437.21 | 19,478.09 | 20,105.81 | 25,721.35 |
best | 11,119.08 | 27,395.55 | 17,607.65 | 29,162.03 | 16,460.94 | 26,279.36 | 24,653.63 | 15,563.07 | 17,435.82 | 28,520.7 | 18,881.33 | 18,940.91 | 24,806.45 | |
worst | 12,601.6 | 28,629.67 | 20,191.76 | 30,067.56 | 18,790.81 | 28,390.93 | 27,133.25 | 16,899.95 | 30,390.26 | 29,867.78 | 19,882.71 | 21,371.61 | 26,403.85 | |
std | 670.4039 | 589.6365 | 1219.607 | 397.6551 | 1012.878 | 888.746 | 1118.426 | 683.2184 | 6344.73 | 641.5669 | 435.4176 | 1030.321 | 823.7796 | |
median | 11,617.67 | 28,332.57 | 18,570.54 | 29,461.46 | 17,284.43 | 27,355.26 | 26,106.21 | 16,360.29 | 18,613.17 | 29,680.17 | 19,574.16 | 20,055.37 | 25,837.55 | |
rank | 1 | 11 | 4 | 13 | 3 | 10 | 9 | 2 | 7 | 12 | 5 | 6 | 8 | |
C17-F23 | mean | 2877.697 | 4909.274 | 3897.417 | 4911.066 | 3224.427 | 5009.228 | 4754.862 | 3379.513 | 3490.336 | 3981.02 | 7024.793 | 4523.727 | 4024.355 |
best | 2872.107 | 4698.658 | 3829.733 | 4686.8 | 3212.144 | 4375.185 | 4635.595 | 3302.136 | 3462.519 | 3935.695 | 6528.447 | 4088.171 | 3968.4 | |
worst | 2884.013 | 5155.534 | 3968.806 | 5086.335 | 3250.782 | 5868.487 | 4874.469 | 3478.908 | 3528.331 | 4046.2 | 7376.676 | 4755.132 | 4077.859 | |
std | 5.357202 | 210.0399 | 66.98634 | 170.0295 | 18.22406 | 686.4955 | 117.7478 | 76.61245 | 30.8675 | 47.9752 | 393.8005 | 308.3436 | 61.38807 | |
median | 2877.334 | 4891.451 | 3895.564 | 4935.565 | 3217.391 | 4896.619 | 4754.692 | 3368.504 | 3485.247 | 3971.092 | 7097.025 | 4625.801 | 4025.582 | |
rank | 1 | 10 | 5 | 11 | 2 | 12 | 9 | 3 | 4 | 6 | 13 | 8 | 7 | |
C17-F24 | mean | 3327.407 | 7654.069 | 5028.818 | 9295.819 | 3650.5 | 6109.359 | 5866.757 | 3860.667 | 4131.949 | 4512.935 | 9557.407 | 5518.107 | 5031.28 |
best | 3295.518 | 6080.871 | 4849.854 | 6396.632 | 3611.852 | 5694.234 | 5511.285 | 3798.2 | 3936.704 | 4319.754 | 9006.742 | 5206.928 | 4959.558 | |
worst | 3357.991 | 8722.239 | 5178.953 | 11,219.82 | 3708.311 | 6378.761 | 6406.139 | 3951.043 | 4307.423 | 4701.792 | 10,990.06 | 5915.538 | 5169.385 | |
std | 30.42243 | 1296.2 | 149.2755 | 2398.2 | 47.49002 | 300.5585 | 399.0602 | 73.00364 | 199.5073 | 160.6953 | 982.4706 | 324.0293 | 98.16265 | |
median | 3328.059 | 7906.583 | 5043.231 | 9783.41 | 3640.918 | 6182.221 | 5774.802 | 3846.713 | 4141.834 | 4515.097 | 9116.414 | 5474.982 | 4998.089 | |
rank | 1 | 11 | 6 | 12 | 2 | 10 | 9 | 3 | 4 | 5 | 13 | 8 | 7 | |
C17-F25 | mean | 3185.232 | 13,234.48 | 3979.524 | 18,274.73 | 3601.961 | 9249.247 | 6611.679 | 3371.093 | 5886.412 | 7946.071 | 9713.328 | 3980.408 | 7098.013 |
best | 3137.371 | 12,601.16 | 3665.163 | 16,991.17 | 3447.531 | 8695.57 | 6085.761 | 3309.86 | 5764.028 | 6909.91 | 8992.442 | 3756.703 | 6495.826 | |
worst | 3261.571 | 14,707.24 | 4270.313 | 21,165.62 | 3717.086 | 9610.909 | 6926.438 | 3431.056 | 6217.517 | 9331.78 | 10,981.67 | 4331.937 | 7700.584 | |
std | 61.52949 | 1018.704 | 255.7634 | 2022.54 | 115.5731 | 424.0722 | 391.3741 | 51.16903 | 227.2854 | 1137.891 | 902.3143 | 285.8758 | 640.5351 | |
median | 3170.992 | 12,814.75 | 3991.31 | 17,471.07 | 3621.612 | 9345.255 | 6717.259 | 3371.727 | 5782.052 | 7771.298 | 9439.599 | 3916.495 | 7097.821 | |
rank | 1 | 12 | 4 | 13 | 3 | 10 | 7 | 2 | 6 | 9 | 11 | 5 | 8 | |
C17-F26 | mean | 5757.621 | 33,814.21 | 21,454.77 | 38,754.91 | 10,644.44 | 28,664.88 | 29,186.46 | 10,818.08 | 14,996.27 | 20,816.13 | 29,105.02 | 18190 | 20,097.35 |
best | 5645.905 | 33,338.22 | 19,072.76 | 36,608.49 | 10,053.37 | 27,618.72 | 26,275.7 | 9665.832 | 13,418.35 | 17,195.2 | 27,945.26 | 16,373.82 | 18,751.66 | |
worst | 5844.642 | 34,231.54 | 23,904.72 | 40,086.1 | 11,279.01 | 29,309.07 | 31,664.53 | 12,812.66 | 16,341.08 | 25,395.27 | 30,626.7 | 19,856.37 | 21,014.33 | |
std | 86.19253 | 384.2725 | 2124.891 | 1711.43 | 626.4884 | 750.0704 | 2731.102 | 1414.348 | 1266.478 | 3492.437 | 1155.517 | 1506.606 | 1001.112 | |
median | 5769.969 | 33,843.54 | 21,420.8 | 39,162.52 | 10,622.68 | 28,865.87 | 29,402.8 | 10,396.92 | 15,112.83 | 20,337.02 | 28,924.06 | 18,264.9 | 20,311.69 | |
rank | 1 | 12 | 8 | 13 | 2 | 9 | 11 | 3 | 4 | 7 | 10 | 5 | 6 | |
C17-F27 | mean | 3309.493 | 8327.753 | 4022.239 | 10,795.84 | 3497.578 | 6058.864 | 5560.881 | 3572.454 | 3954.812 | 4160.881 | 12,269.99 | 3948.446 | 5126.891 |
best | 3278.01 | 7097.49 | 3875.389 | 8220.487 | 3469.565 | 5810.983 | 4968.438 | 3536.2 | 3809.989 | 3928.691 | 11,978.11 | 3778.598 | 4908.649 | |
worst | 3344.5 | 9574.168 | 4263.384 | 13,478.56 | 3524.275 | 6368.227 | 6219.759 | 3649.169 | 4072.225 | 4543.659 | 12,503.97 | 4115.756 | 5453.529 | |
std | 29.13307 | 1382.852 | 172.1394 | 2911.656 | 22.95773 | 248.8617 | 690.9647 | 53.9399 | 132.5784 | 279.9852 | 242.9169 | 193.7832 | 239.7051 | |
median | 3307.732 | 8319.677 | 3975.091 | 10,742.15 | 3498.236 | 6028.123 | 5527.664 | 3552.225 | 3968.516 | 4085.586 | 12,298.95 | 3949.714 | 5072.694 | |
rank | 1 | 11 | 6 | 12 | 2 | 10 | 9 | 3 | 5 | 7 | 13 | 4 | 8 | |
C17-F28 | mean | 3322.242 | 17,991.2 | 4478.19 | 24,108.64 | 3697.249 | 13,651.33 | 9207.387 | 3436.49 | 8286.21 | 9873.556 | 16,237.66 | 6929.717 | 10,135.48 |
best | 3318.742 | 16,786.97 | 4225.378 | 21,649.57 | 3592.713 | 10,824.52 | 7941.293 | 3366.715 | 7097.487 | 7824.721 | 14,079.56 | 4870.127 | 9275.217 | |
worst | 3327.816 | 20,221.49 | 4664.684 | 27,186.66 | 3771.72 | 15,794.61 | 10,035.95 | 3504.902 | 9983.366 | 11,672.86 | 17,865.46 | 10,422.95 | 11,089.27 | |
std | 4.500714 | 1604.85 | 191.0708 | 2384.987 | 77.38139 | 2446.604 | 916.0249 | 58.38879 | 1250.086 | 1842.249 | 1626.437 | 2598.878 | 997.1342 | |
median | 3321.205 | 17,478.16 | 4511.349 | 23,799.16 | 3712.281 | 13,993.1 | 9426.153 | 3437.172 | 8031.994 | 9998.32 | 16,502.81 | 6212.894 | 10,088.71 | |
rank | 1 | 12 | 4 | 13 | 3 | 10 | 7 | 2 | 6 | 8 | 11 | 5 | 9 | |
C17-F29 | mean | 4450.696 | 153,525.4 | 8751.92 | 291,582.6 | 6470.85 | 16,101.64 | 14,518.18 | 7969.069 | 7654.422 | 11,086.21 | 21,508.36 | 7938.949 | 10,592.56 |
best | 4169.151 | 87,746.73 | 7664.862 | 156,769.3 | 5742.449 | 12,568.33 | 12,184.87 | 7242.033 | 7468.228 | 10,329.34 | 17,877.27 | 7368.964 | 10,404.47 | |
worst | 4829.521 | 209,282.3 | 9350.469 | 404,565.4 | 7122.632 | 20,193.8 | 16,519.68 | 8491.258 | 7895.494 | 11,599.65 | 27,959.25 | 8649.222 | 10,989.46 | |
std | 289.9914 | 53,145.28 | 764.3004 | 108,453.6 | 584.5761 | 3272.876 | 2201.057 | 551.5885 | 183.939 | 554.7787 | 4827.237 | 610.5231 | 282.6706 | |
median | 4402.056 | 158,536.3 | 8996.175 | 302,497.8 | 6509.159 | 15,822.21 | 14,684.08 | 8071.493 | 7626.983 | 11,207.92 | 20,098.45 | 7868.806 | 10,488.15 | |
rank | 1 | 12 | 6 | 13 | 2 | 10 | 9 | 5 | 3 | 8 | 11 | 4 | 7 | |
C17-F30 | mean | 5407.166 | 1.93 × 1010 | 23,035,407 | 3.13 × 1010 | 3,901,472 | 1.11 × 1010 | 1.25 × 109 | 85,519,419 | 1.53 × 109 | 3.14 × 109 | 6.1 × 109 | 5.03 × 108 | 5.53 × 108 |
best | 5337.48 | 1.69 × 1010 | 13,126,945 | 2.93 × 1010 | 1,739,030 | 6.77 × 109 | 1.02 × 109 | 52,622,040 | 6.27 × 108 | 1.18 × 109 | 4.36 × 109 | 1.22 × 108 | 4.61 × 108 | |
worst | 5557.155 | 2.09 × 1010 | 40,507,493 | 3.39 × 1010 | 6,370,142 | 1.38 × 1010 | 1.69 × 109 | 1.05 × 108 | 2 × 109 | 5.83 × 109 | 7.39 × 109 | 1.56 × 109 | 5.93 × 108 | |
std | 103.8976 | 1.74 × 109 | 12,590,648 | 2.04 × 109 | 2,198,236 | 3.15 × 109 | 3.09 × 108 | 24,056,210 | 6.32 × 108 | 2.4 × 109 | 1.32 × 109 | 7.23 × 108 | 63,276,132 | |
median | 5367.014 | 1.96 × 1010 | 19,253,594 | 3.11 × 1010 | 3,748,358 | 1.2 × 1010 | 1.14 × 109 | 92,179,183 | 1.74 × 109 | 2.78 × 109 | 6.34 × 109 | 1.65 × 108 | 5.79 × 108 | |
rank | 1 | 12 | 3 | 13 | 2 | 11 | 7 | 4 | 8 | 9 | 10 | 5 | 6 | |
Sum rank | 29 | 336 | 140 | 355 | 65 | 293 | 265 | 114 | 156 | 249 | 272 | 162 | 203 | |
Mean rank | 1 | 11.586207 | 4.8275862 | 12.241379 | 2.2413793 | 10.103448 | 9.137931 | 3.9310345 | 5.3793103 | 8.5862069 | 9.3793103 | 5.5862069 | 7 | |
Total rank | 1 | 12 | 4 | 13 | 2 | 11 | 9 | 3 | 5 | 8 | 10 | 6 | 7 |
Wilcoxon rank sum test results.
Compared Algorithm | Objective Function Type | |||
---|---|---|---|---|
CEC 2017 | ||||
D = 10 | D = 30 | D = 50 | D = 100 | |
POA vs. WSO | 1.28 × 10−21 | 1.28 × 10−21 | 1.28 × 10−21 | 1.28 × 10−21 |
POA vs. AVOA | 2.46 × 10−19 | 1.98 × 10−21 | 1.28 × 10−21 | 1.28 × 10−21 |
POA vs. RSA | 1.28 × 10−21 | 1.28 × 10−21 | 1.28 × 10−21 | 1.28 × 10−21 |
POA vs. MPA | 1.31 × 10−18 | 1.02 × 10−16 | 4.33 × 10−18 | 1.28 × 10−21 |
POA vs. TSA | 6.20 × 10−21 | 1.28 × 10−21 | 1.28 × 10−21 | 1.28 × 10−21 |
POA vs. WOA | 6.20 × 10−21 | 1.28 × 10−21 | 1.28 × 10−21 | 1.28 × 10−21 |
POA vs. MVO | 5.89 × 10−19 | 1.39 × 10−21 | 1.28 × 10−21 | 1.28 × 10−21 |
POA vs. GWO | 3.41 × 10−21 | 1.28 × 10−21 | 1.28 × 10−21 | 1.28 × 10−21 |
POA vs. TLBO | 2.41 × 10−21 | 1.28 × 10−21 | 1.28 × 10−21 | 1.28 × 10−21 |
POA vs. GSA | 1.05 × 10−18 | 1.32 × 10−21 | 1.28 × 10−21 | 1.28 × 10−21 |
POA vs. PSO | 1.01 × 10−19 | 1.54 × 10−21 | 1.28 × 10−21 | 1.28 × 10−21 |
POA vs. GA | 1.76 × 10−19 | 1.28 × 10−21 | 1.28 × 10−21 | 1.28 × 10−21 |
Optimization results of the CEC 2011 test suite; background color has been used in order to make the table more reader-friendly and to separate the results of benchmark functions from each other; The best results are specified using bold.
POA | WSO | AVOA | RSA | MPA | TSA | WOA | MVO | GWO | TLBO | GSA | PSO | GA | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C11-F1 | mean | 5.920103 | 16.29617 | 12.12715 | 20.06805 | 7.372872 | 16.94094 | 12.38434 | 13.04843 | 10.27841 | 16.96911 | 19.8221 | 16.53429 | 21.31513 |
best | 2 × 10−10 | 13.50111 | 7.791703 | 17.72143 | 0.326893 | 15.41917 | 7.235374 | 11.08197 | 0.980679 | 16.26314 | 17.25998 | 9.2021 | 19.60384 | |
worst | 12.30606 | 19.44839 | 16.24841 | 22.93654 | 12.64011 | 18.86907 | 16.64328 | 15.36547 | 15.30159 | 17.55835 | 21.86564 | 22.8677 | 24.01321 | |
std | 7.032006 | 3.148419 | 4.880388 | 2.738736 | 5.899133 | 1.518094 | 4.62061 | 2.084239 | 6.560785 | 0.705619 | 2.041764 | 6.1097 | 2.014154 | |
median | 5.687176 | 16.11758 | 12.23424 | 19.80712 | 8.262244 | 16.73777 | 12.82936 | 12.87313 | 12.41568 | 17.02748 | 20.08139 | 17.03368 | 20.82173 | |
rank | 1 | 7 | 4 | 12 | 2 | 9 | 5 | 6 | 3 | 10 | 11 | 8 | 13 | |
C11-F2 | mean | −26.3179 | −15.9138 | −21.7194 | −13.4565 | −25.2481 | −13.2117 | −19.6074 | −11.0437 | −23.1085 | −12.8688 | −16.9203 | −23.1512 | −14.6421 |
best | −27.0676 | −16.9621 | −22.2939 | −13.8985 | −25.85 | −16.3476 | −22.4632 | −12.8537 | −24.8167 | −14.0126 | −21.4324 | −24.3687 | −16.5512 | |
worst | −25.4328 | −14.9089 | −21.1364 | −13.0127 | −24.0741 | −11.3447 | −16.2291 | −9.68473 | −19.9571 | −11.8322 | −13.3466 | −21.1826 | −13.2755 | |
std | 0.722057 | 1.072936 | 0.501119 | 0.475801 | 0.857781 | 2.413417 | 3.328862 | 1.440992 | 2.237383 | 0.930503 | 3.745006 | 1.408354 | 1.621478 | |
median | −26.3856 | −15.8921 | −21.7236 | −13.4575 | −25.5342 | −12.5772 | −19.8687 | −10.8182 | −23.8302 | −12.8153 | −16.4511 | −23.5268 | −14.3708 | |
rank | 1 | 8 | 5 | 10 | 2 | 11 | 6 | 13 | 4 | 12 | 7 | 3 | 9 | |
C11-F4 | mean | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 |
best | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | |
worst | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | |
std | 1.95 × 10−19 | 1.87 × 10−11 | 2.14 × 10−9 | 4.2 × 10−11 | 1.05 × 10−15 | 2.01 × 10−14 | 4.9 × 10−19 | 8.38 × 10−13 | 3.14 × 10−15 | 6.6 × 10−14 | 1.69 × 10−19 | 6.42 × 10−20 | 2.31 × 10−18 | |
median | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | |
rank | 1 | 11 | 13 | 12 | 6 | 8 | 4 | 10 | 7 | 9 | 3 | 2 | 5 | |
C11-F4 | mean | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
best | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
worst | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
std | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
median | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
rank | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
C11-F5 | mean | −34.1274 | −26.0703 | −28.9288 | −21.8701 | −33.3926 | −28.0835 | −28.5154 | −27.9624 | −31.9229 | −13.9037 | −28.2712 | −12.0273 | −12.7727 |
best | −34.7494 | −27.0714 | −29.9445 | −23.7379 | −33.9826 | −31.8021 | −28.7 | −32.0647 | −34.0666 | −15.6486 | −31.8924 | −15.1159 | −14.023 | |
worst | −33.3862 | −25.2709 | −28.4411 | −19.8332 | −32.2519 | −23.5537 | −28.0652 | −25.7367 | −28.4426 | −12.5761 | −25.4354 | −10.552 | −11.4111 | |
std | 0.576513 | 0.784839 | 0.712623 | 2.17301 | 0.797135 | 3.492912 | 0.30949 | 3.012029 | 2.490682 | 1.348016 | 2.897875 | 2.196324 | 1.205573 | |
median | −34.1871 | −25.9695 | −28.6647 | −21.9546 | −33.668 | −28.489 | −28.6481 | −27.0241 | −32.5912 | −13.6952 | −27.8785 | −11.2207 | −12.8284 | |
rank | 1 | 9 | 4 | 10 | 2 | 7 | 5 | 8 | 3 | 11 | 6 | 13 | 12 | |
C11-F6 | mean | −24.1119 | −15.3943 | −19.7225 | −14.5328 | −22.8219 | −9.77998 | −20.5213 | −11.488 | −20.2419 | −5.23929 | −22.1938 | −5.98984 | −6.77572 |
best | −27.4298 | −15.7454 | −21.3912 | −14.9609 | −25.9832 | −17.4134 | −22.9922 | −18.1843 | −23.0902 | −5.96024 | −26.1223 | −8.96244 | −11.1447 | |
worst | −23.0059 | −15.0486 | −18.0255 | −13.5029 | −21.5594 | −6.79967 | −14.3118 | −4.99898 | −18.6664 | −4.99898 | −19.1024 | −4.99898 | −4.99898 | |
std | 2.271847 | 0.377713 | 1.521189 | 0.708141 | 2.185792 | 5.265013 | 4.285644 | 7.160496 | 2.151891 | 0.493651 | 3.158433 | 2.035421 | 3.027548 | |
median | −23.0059 | −15.3917 | −19.7367 | −14.8337 | −21.8724 | −7.45343 | −22.3905 | −11.3843 | −19.6054 | −4.99898 | −21.7752 | −4.99898 | −5.47961 | |
rank | 1 | 7 | 6 | 8 | 2 | 10 | 4 | 9 | 5 | 13 | 3 | 12 | 11 | |
C11-F7 | mean | 0.860699 | 1.502351 | 1.225146 | 1.772504 | 0.920045 | 1.240506 | 1.620768 | 0.878234 | 1.038737 | 1.599303 | 1.049111 | 1.086923 | 1.618042 |
best | 0.582266 | 1.411009 | 1.079851 | 1.582205 | 0.732937 | 1.052704 | 1.518444 | 0.841591 | 0.843875 | 1.452557 | 0.842345 | 0.854143 | 1.242676 | |
worst | 1.025027 | 1.620161 | 1.365036 | 1.955283 | 1.008514 | 1.572375 | 1.793033 | 0.9401 | 1.231193 | 1.744715 | 1.219762 | 1.293277 | 1.812241 | |
std | 0.206672 | 0.092172 | 0.160099 | 0.156595 | 0.129573 | 0.235055 | 0.123128 | 0.044511 | 0.162482 | 0.133354 | 0.172852 | 0.221148 | 0.266994 | |
median | 0.91775 | 1.489116 | 1.227848 | 1.776264 | 0.969365 | 1.168472 | 1.585796 | 0.865622 | 1.039941 | 1.59997 | 1.067169 | 1.100137 | 1.708625 | |
rank | 1 | 9 | 7 | 13 | 3 | 8 | 12 | 2 | 4 | 10 | 5 | 6 | 11 | |
C11-F8 | mean | 220 | 276.1359 | 237.6892 | 311.0486 | 222.1133 | 252.2281 | 259.8008 | 223.5222 | 226.3399 | 223.5222 | 242.7658 | 435.5821 | 222.1525 |
best | 220 | 253.2495 | 223.1308 | 275.6506 | 220 | 220 | 241.8376 | 220 | 220 | 220 | 220 | 244.264 | 220 | |
worst | 220 | 306.1606 | 252.2476 | 349.6166 | 224.2266 | 336.2323 | 299.6015 | 234.0888 | 232.6799 | 234.0888 | 283.3994 | 522.4314 | 228.6098 | |
std | 0 | 23.79358 | 12.86933 | 31.16122 | 2.506357 | 57.84678 | 27.4653 | 7.235229 | 7.519071 | 7.235229 | 30.87915 | 135.2212 | 4.421529 | |
median | 220 | 272.5668 | 237.6892 | 309.4637 | 222.1133 | 226.3399 | 248.882 | 220 | 226.3399 | 220 | 233.8319 | 487.8164 | 220 | |
rank | 1 | 10 | 6 | 11 | 2 | 8 | 9 | 4 | 5 | 4 | 7 | 12 | 3 | |
C11-F9 | mean | 8789.286 | 483,074.6 | 328,388.4 | 919,557.3 | 18,656.81 | 58,460.01 | 325,218 | 116,528.7 | 38,391.85 | 354,583.9 | 713,172.7 | 937,253.5 | 1,681,148 |
best | 5457.674 | 324,045.2 | 290,082.5 | 601,645.3 | 10,517.11 | 41,850.42 | 180,313.9 | 66,460.77 | 16,926.42 | 293,497.2 | 611,204 | 752,356.9 | 1,611,892 | |
worst | 14,042.29 | 554,409.1 | 353,198.3 | 1,078,156 | 25,556.09 | 73,839.47 | 550,072.5 | 176,575.1 | 65,752.91 | 455,337 | 767,456.3 | 1,148,459 | 1,779,466 | |
std | 3800.348 | 111,655 | 28,458.98 | 221,949 | 7021.667 | 14,112.97 | 172,929.7 | 46,690.19 | 21,194.23 | 73,247.74 | 71,385.83 | 217,154.4 | 84,994.93 | |
median | 7828.591 | 526,922 | 335,136.4 | 999,213.8 | 19,277.02 | 59,075.07 | 285,242.7 | 111,539.5 | 35,444.03 | 334,750.6 | 737,015.2 | 924,099 | 1,666,617 | |
rank | 1 | 9 | 7 | 11 | 2 | 4 | 6 | 5 | 3 | 8 | 10 | 12 | 13 | |
C11-F10 | mean | −21.4889 | −14.9961 | −17.5447 | −13.5346 | −19.3631 | −15.3584 | −14.0482 | −15.6278 | −15.1114 | −12.678 | −14.2904 | −12.7642 | −12.5089 |
best | −21.8299 | −16.0597 | −17.7395 | −13.9161 | −19.746 | −19.2378 | −14.5308 | −21.2538 | −15.5783 | −12.7902 | −14.7804 | −12.8378 | −12.5968 | |
worst | −20.7878 | −14.5 | −17.1211 | −13.3132 | −18.9255 | −13.3665 | −13.6616 | −12.8466 | −14.1286 | −12.4989 | −13.6383 | −12.6297 | −12.346 | |
std | 0.487227 | 0.736752 | 0.299069 | 0.289239 | 0.407904 | 2.72605 | 0.369057 | 3.909365 | 0.695109 | 0.132631 | 0.590486 | 0.094807 | 0.114197 | |
median | −21.669 | −14.7122 | −17.659 | −13.4545 | −19.3905 | −14.4147 | −14.0001 | −14.2053 | −15.3695 | −12.7115 | −14.3714 | −12.7947 | −12.5465 | |
rank | 1 | 7 | 3 | 10 | 2 | 5 | 9 | 4 | 6 | 12 | 8 | 11 | 13 | |
C11-F11 | mean | 571,712.3 | 5,089,428 | 933,728.2 | 7,729,839 | 1,510,643 | 5,212,407 | 1,127,503 | 1,207,727 | 3,388,503 | 4,577,612 | 1,296,573 | 4,587,180 | 5,366,107 |
best | 260,837.9 | 4,846,157 | 702,522.4 | 7,431,600 | 1,392,282 | 4,341,728 | 1,021,968 | 624,656.8 | 3,211,626 | 4,510,062 | 1,160,011 | 4,529,197 | 5,286,309 | |
worst | 828,560.9 | 5,424,830 | 1,124,700 | 7,928,857 | 1,662,178 | 6,302,843 | 1,302,398 | 2,427,751 | 3,655,171 | 4,633,423 | 1,466,471 | 4,633,423 | 5,417,883 | |
std | 254,962.4 | 288,930.1 | 189,236.6 | 216,947.1 | 138,529.7 | 833,226.9 | 130,660.1 | 845,509.3 | 193,819.7 | 55,400.98 | 134,407.8 | 51,634.41 | 59,799.43 | |
median | 598,725.2 | 5,043,362 | 953,845.3 | 7,779,449 | 1,494,055 | 5,102,528 | 1,092,822 | 889,249.9 | 3,343,608 | 4,583,482 | 1,279,905 | 4,593,050 | 5,380,117 | |
rank | 1 | 10 | 2 | 13 | 6 | 11 | 3 | 4 | 7 | 8 | 5 | 9 | 12 | |
C11-F12 | mean | 1,199,805 | 7,409,804 | 3,078,638 | 11,593,820 | 1,264,353 | 4,507,023 | 5,185,186 | 1,310,025 | 1,393,451 | 12,537,698 | 5,163,454 | 2,161,837 | 12,676,663 |
best | 1,155,937 | 7,106,082 | 2,984,012 | 10,776,140 | 1,194,678 | 4,281,046 | 4,827,396 | 1,182,719 | 1,247,427 | 11,817,734 | 4,917,229 | 2,021,679 | 12,560,401 | |
worst | 1,249,353 | 7,682,492 | 3,144,051 | 12,315,917 | 1,339,516 | 4,626,721 | 5,361,089 | 1,428,430 | 1,519,843 | 13,096,880 | 5,338,627 | 2,335,962 | 12,793,601 | |
std | 46,080.46 | 244,867.2 | 71,787.57 | 648,639.6 | 66,020.2 | 164,278.3 | 252,560.4 | 103,468 | 116,316.4 | 550,537.4 | 185,730.7 | 133,330.1 | 98,177.52 | |
median | 1,196,965 | 7,425,322 | 3,093,245 | 11,641,612 | 1,261,610 | 4,560,163 | 5,276,130 | 1,314,475 | 1,403,267 | 12,618,090 | 5,198,980 | 2,144,854 | 12,676,324 | |
rank | 1 | 10 | 6 | 11 | 2 | 7 | 9 | 3 | 4 | 12 | 8 | 5 | 13 | |
C11-F13 | mean | 15,444.2 | 15,801.46 | 15,447.48 | 16,192.64 | 15,460.59 | 15,483.94 | 15,523.07 | 15,499.24 | 15,493.37 | 15,866.74 | 112,999.3 | 15,484.49 | 28,024.66 |
best | 15,444.19 | 15,641.17 | 15,446.62 | 15,833.03 | 15,458.6 | 15,475.37 | 15,485.31 | 15,481.76 | 15,487.39 | 15,602.6 | 82,270.86 | 15,469.61 | 15,458.24 | |
worst | 15,444.21 | 16,189.79 | 15,448.43 | 17,086.06 | 15,464.04 | 15,494.84 | 15,573.96 | 15,532.51 | 15,503.73 | 16,353.34 | 154,677.9 | 15,516.05 | 65,420.01 | |
std | 0.008884 | 268.4869 | 0.785818 | 616.7849 | 2.478024 | 9.886368 | 42.36283 | 24.1668 | 7.436411 | 349.0008 | 33,482.43 | 21.84165 | 25,605.76 | |
median | 15,444.2 | 15,687.44 | 15,447.43 | 15,925.73 | 15,459.86 | 15,482.78 | 15,516.5 | 15,491.35 | 15,491.19 | 15,755.51 | 107,524.3 | 15,476.15 | 15,610.2 | |
rank | 1 | 9 | 2 | 11 | 3 | 4 | 8 | 7 | 6 | 10 | 13 | 5 | 12 | |
C11-F14 | mean | 18,295.35 | 99,701.16 | 18,488.97 | 200,495.8 | 18,565.39 | 19,363.59 | 19,099.47 | 19,266.84 | 19,105.47 | 271,120.5 | 18,984.5 | 19,012.65 | 19,001.62 |
best | 18,241.58 | 76,442.57 | 18,382.24 | 148,310.8 | 18,484.84 | 19,143.07 | 18,958.94 | 19,171.86 | 18,971.35 | 28,642.2 | 18,736.06 | 18,872.44 | 18,757.13 | |
worst | 18,388.08 | 138,457.2 | 18,586.71 | 287,843.8 | 18,643.92 | 19,830.86 | 19,196.33 | 19,330.18 | 19,258.69 | 520,996.6 | 19,158.54 | 19,151.92 | 19,253.43 | |
std | 69.96398 | 28,491.57 | 97.99008 | 64,196.31 | 68.36705 | 323.4255 | 115.9594 | 71.45986 | 130.9626 | 242,775.2 | 191.4042 | 117.2667 | 208.7133 | |
median | 18,275.87 | 91,952.46 | 18,493.46 | 182,914.4 | 18,566.4 | 19,240.21 | 19,121.31 | 19,282.67 | 19,095.92 | 267,421.6 | 19,021.71 | 19,013.11 | 18,997.96 | |
rank | 1 | 11 | 2 | 12 | 3 | 10 | 7 | 9 | 8 | 13 | 4 | 6 | 5 | |
C11-F15 | mean | 32,883.58 | 789,854 | 97,714.07 | 1,660,569 | 32,939.59 | 51,625.11 | 193,517.4 | 33,070.75 | 33,051.61 | 13,341,620 | 263,714.8 | 33,233.38 | 6,868,518 |
best | 32,782.17 | 328,154.6 | 41,791.18 | 697,019.4 | 32858 | 33,035.37 | 32,978.67 | 32,983.94 | 33,009.67 | 2,799,046 | 233,893.6 | 33,217.56 | 3,128,721 | |
worst | 32,956.46 | 1,979,409 | 160,296.7 | 4,327,558 | 33,010.26 | 107,181.4 | 275,074.9 | 33,122.91 | 33,117.85 | 19,893,221 | 284,122.7 | 33,253.24 | 11,768,149 | |
std | 75.18941 | 817,470.1 | 65,423.85 | 1,829,004 | 64.17747 | 38,041.05 | 112,257.6 | 63.22443 | 49.31413 | 7,983,297 | 24,000.85 | 15.28513 | 4,068,609 | |
median | 32,897.86 | 425,926.1 | 94,384.21 | 808,848.4 | 32,945.06 | 33,141.84 | 233,008 | 33,088.08 | 33,039.45 | 15,337,106 | 268,421.4 | 33,231.35 | 6,288,601 | |
rank | 1 | 10 | 7 | 11 | 2 | 6 | 8 | 4 | 3 | 13 | 9 | 5 | 12 | |
C11-F16 | mean | 133,550 | 835,504.6 | 134,957 | 1,703,962 | 137,102.1 | 143,561.1 | 140,998.8 | 140,691.3 | 144,206.2 | 76,907,410 | 16,210,894 | 68,837,661 | 66,096,332 |
best | 131,374.2 | 268,051.3 | 133,344.2 | 427,899.5 | 135,005.9 | 140,925.2 | 136,081.1 | 133,384.9 | 142,154.2 | 74,944,479 | 8,242,318 | 56,944,849 | 53,423,145 | |
worst | 136,310.8 | 1,949,599 | 135,633 | 4,208,326 | 140,662.2 | 145,270.7 | 145,978.3 | 148,000 | 149,364.9 | 79,121,321 | 29,314,317 | 82,255,889 | 84,537,318 | |
std | 2337.559 | 776,901.4 | 1116.913 | 1,746,392 | 2587.54 | 2086.663 | 4238.576 | 6256.899 | 3555.112 | 1,797,875 | 9,358,325 | 11,205,354 | 13,574,898 | |
median | 133,257.5 | 562,184 | 135,425.5 | 1,089,810 | 136,370.1 | 144,024.3 | 140,967.9 | 140,690.3 | 142,653 | 76,781,921 | 13,643,470 | 68,074,953 | 63,212,432 | |
rank | 1 | 8 | 2 | 9 | 3 | 6 | 5 | 4 | 7 | 13 | 10 | 12 | 11 | |
C11-F17 | mean | 1,926,615 | 7.75 × 109 | 2 × 109 | 1.34 × 1010 | 2,241,719 | 1.11 × 109 | 8.39 × 109 | 2,951,922 | 2,871,926 | 1.93 × 1010 | 9.7 × 109 | 1.8 × 1010 | 1.89 × 1010 |
best | 1,916,953 | 6.6 × 109 | 1.82 × 109 | 9.64 × 109 | 1,951,893 | 9.14 × 108 | 5.98 × 109 | 2,248,940 | 2,021,775 | 1.86 × 1010 | 8.53 × 109 | 1.59 × 1010 | 1.77 × 1010 | |
worst | 1,942,685 | 8.59 × 109 | 2.19 × 109 | 1.64 × 1010 | 2,773,823 | 1.27 × 109 | 1.11 × 1010 | 3,497,374 | 4,480,830 | 2.01 × 1010 | 1.03 × 1010 | 2.08 × 1010 | 2.14 × 1010 | |
std | 11,729.35 | 9.04 × 108 | 1.68 × 108 | 2.98 × 109 | 378,232.3 | 1.87 × 108 | 2.23 × 109 | 591,769.5 | 1,137,387 | 6.69 × 108 | 8.12 × 108 | 2.28 × 109 | 1.72 × 109 | |
median | 1,923,412 | 7.9 × 109 | 2 × 109 | 1.38 × 1010 | 2,120,579 | 1.13 × 109 | 8.2 × 109 | 3,030,686 | 2,492,549 | 1.92 × 1010 | 9.99 × 109 | 1.77 × 1010 | 1.83 × 1010 | |
rank | 1 | 7 | 6 | 10 | 2 | 5 | 8 | 4 | 3 | 13 | 9 | 11 | 12 | |
C11-F18 | mean | 942,057.5 | 47,685,736 | 5,797,182 | 1.03 × 108 | 967,735.7 | 1,900,478 | 8,412,951 | 981,892.1 | 1,019,092 | 26,941,532 | 9,752,238 | 1.17 × 108 | 99,204,327 |
best | 938,416.2 | 32,835,794 | 3,536,567 | 70,851,530 | 948,240.5 | 1,678,127 | 3,691,349 | 961,316.7 | 963,662 | 21,379,694 | 7,310,034 | 98,075,250 | 95,567,953 | |
worst | 944,706.9 | 54,224,643 | 9,852,395 | 1.17 × 108 | 1,018,468 | 2,196,439 | 14,673,571 | 991,091.1 | 1,165,991 | 29,133,515 | 12,269,456 | 1.3 × 108 | 1.03 × 108 | |
std | 2710.775 | 10,287,738 | 3,021,014 | 22,213,838 | 34,862.01 | 256,626.5 | 4,762,937 | 14,247.92 | 100,799.7 | 3,824,041 | 2,275,875 | 14,522,917 | 3,058,517 | |
median | 942,553.5 | 51,841,254 | 4,899,884 | 1.11 × 108 | 952,117 | 1,863,672 | 7,643,442 | 987,580.2 | 973,357.6 | 28,626,459 | 9,714,731 | 1.2 × 108 | 99,195,338 | |
rank | 1 | 10 | 6 | 12 | 2 | 5 | 7 | 3 | 4 | 9 | 8 | 13 | 11 | |
C11-F19 | mean | 1,025,341 | 46,951,626 | 5,895,982 | 1 × 108 | 1,122,631 | 2,269,177 | 8,976,703 | 1,415,705 | 1,317,213 | 30,923,282 | 5,559,356 | 1.49 × 108 | 99,546,536 |
best | 967,927.7 | 40,077,691 | 5,413,733 | 86,762,354 | 1,056,780 | 2,056,560 | 1,912,200 | 1,106,530 | 1,198,912 | 21,691,480 | 2,222,360 | 1.36 × 108 | 97,066,099 | |
worst | 1,167,142 | 59,652,101 | 7,107,091 | 1.26 × 108 | 1,275,910 | 2,645,965 | 16,142,794 | 1,827,341 | 1,493,445 | 38,532,571 | 7,250,902 | 1.73 × 108 | 1.02 × 108 | |
std | 97,398.36 | 9,066,953 | 834,136.7 | 18,873,011 | 105,641.6 | 265,805.2 | 6,885,212 | 308,560.8 | 128,320.4 | 7,489,918 | 2,343,343 | 16,563,540 | 2,301,701 | |
median | 983,146.6 | 44,038,356 | 5,531,551 | 94,386,241 | 1,078,918 | 2,187,092 | 8,925,910 | 1,364,474 | 1,288,247 | 31,734,538 | 6,382,080 | 1.45 × 108 | 99,313,659 | |
rank | 1 | 10 | 7 | 12 | 2 | 5 | 8 | 4 | 3 | 9 | 6 | 13 | 11 | |
C11-F20 | mean | 941,250.4 | 49,902,655 | 5,223,809 | 1.08 × 108 | 957,767.4 | 1,706,979 | 6,424,884 | 968,550.5 | 990,801.4 | 30,030,029 | 12,470,747 | 1.38 × 108 | 99,812,450 |
best | 936,143.2 | 43,921,348 | 4,620,095 | 94,897,156 | 955,705.6 | 1,548,205 | 6,060,356 | 960,209 | 973,383.7 | 29,375,031 | 8,325,455 | 1.26 × 108 | 95,046,637 | |
worst | 946,866.6 | 59,071,400 | 5,868,197 | 1.29 × 108 | 958,850.4 | 1,972,240 | 6,911,234 | 977,985.8 | 1,004,265 | 30,738,864 | 19,234,959 | 1.5 × 108 | 1.04 × 108 | |
std | 4899.038 | 6,630,787 | 532,074.1 | 14,882,069 | 1441.981 | 206,856.4 | 373,449.1 | 7851.209 | 13,658.84 | 582,763.3 | 4,896,556 | 13,558,271 | 3,674,975 | |
median | 940,995.9 | 48,308,936 | 5,203,473 | 1.05 × 108 | 958,256.7 | 1,653,735 | 6,363,973 | 968,003.6 | 992,778.4 | 30,003,110 | 11,161,287 | 1.38 × 108 | 1 × 108 | |
rank | 1 | 10 | 6 | 12 | 2 | 5 | 7 | 3 | 4 | 9 | 8 | 13 | 11 | |
C11-F21 | mean | 12.71443 | 45.1876 | 20.43993 | 67.87132 | 15.50132 | 27.51897 | 35.27695 | 25.54006 | 21.07511 | 88.83355 | 36.93059 | 93.18987 | 90.48226 |
best | 9.974206 | 37.79559 | 18.9035 | 51.24228 | 13.24809 | 24.4736 | 32.7261 | 22.6756 | 19.38568 | 43.73739 | 33.01343 | 80.97607 | 52.76258 | |
worst | 14.97499 | 53.06318 | 22.32666 | 84.41698 | 17.78701 | 28.83146 | 38.45684 | 28.47066 | 23.41105 | 129.9077 | 39.66032 | 103.1089 | 109.7311 | |
std | 2.357559 | 6.741994 | 1.502622 | 15.03798 | 2.158206 | 2.098538 | 2.590224 | 3.174898 | 1.907519 | 36.26977 | 3.001039 | 11.39521 | 27.27537 | |
median | 12.95425 | 44.94581 | 20.26478 | 67.91302 | 15.48509 | 28.38542 | 34.96244 | 25.507 | 20.75185 | 90.84455 | 37.5243 | 94.33725 | 99.71769 | |
rank | 1 | 9 | 3 | 10 | 2 | 6 | 7 | 5 | 4 | 11 | 8 | 13 | 12 | |
C11-F22 | mean | 16.12513 | 42.68276 | 25.9215 | 57.10887 | 18.68324 | 29.98205 | 42.26705 | 30.11715 | 23.79947 | 90.96656 | 42.57617 | 94.45669 | 82.28708 |
best | 11.50133 | 37.81929 | 20.73719 | 42.43422 | 15.55659 | 25.85189 | 36.1813 | 23.32794 | 23.31157 | 59.34979 | 36.35534 | 78.91304 | 80.82874 | |
worst | 19.55286 | 47.9384 | 30.93823 | 65.87537 | 21.03086 | 32.65023 | 46.82953 | 34.97092 | 24.23236 | 107.8169 | 50.02428 | 104.5544 | 84.13235 | |
std | 4.101915 | 4.49598 | 4.977189 | 10.48875 | 2.703119 | 2.979601 | 4.988123 | 5.135703 | 0.41001 | 22.32621 | 5.84784 | 11.714 | 1.411088 | |
median | 16.72317 | 42.48667 | 26.00529 | 60.06295 | 19.07277 | 30.71304 | 43.02869 | 31.08487 | 23.82698 | 98.34978 | 41.96253 | 97.17966 | 82.09361 | |
rank | 1 | 9 | 4 | 10 | 2 | 5 | 7 | 6 | 3 | 12 | 8 | 13 | 11 | |
Sum rank | 22 | 191 | 109 | 231 | 55 | 146 | 145 | 118 | 97 | 222 | 157 | 198 | 224 | |
Mean rank | 1 | 8.681818 | 4.954545 | 10.5 | 2.5 | 6.636364 | 6.590909 | 5.363636 | 4.409091 | 10.09091 | 7.136364 | 9 | 10.18182 | |
Total rank | 1 | 2 | 12 | 4 | 13 | 3 | 11 | 9 | 6 | 7 | 10 | 5 | 8 | |
Wilcoxon: p-value | 1.28 × 10−15 | 7.32 × 10−15 | 1.28 × 10−15 | 5.32 × 10−15 | 2.74 × 10−15 | 1.28 × 10−15 | 2.99 × 10−12 | 5.32 × 10−15 | 4.02 × 10−15 | 6.38 × 10−15 | 1.90 × 10−15 | 4.02 × 10−15 |
Performance of optimization algorithms on pressure vessel design problem.
Algorithm | Optimum Variables | Optimum Cost | |||
---|---|---|---|---|---|
Ts | Th | R | L | ||
POA | 0.7780271 | 0.3845792 | 40.312284 | 200 | 5882.8955 |
WSO | 0.7780272 | 0.3845788 | 40.312283 | 200 | 5882.9013 |
AVOA | 0.7780307 | 0.384581 | 40.312469 | 199.99741 | 5882.9075 |
RSA | 1.1799694 | 0.6311498 | 59.819101 | 53.515497 | 7692.0978 |
MPA | 0.7780271 | 0.3845792 | 40.312284 | 200 | 5882.9013 |
TSA | 0.7794463 | 0.3857743 | 40.383839 | 200 | 5908.4196 |
WOA | 0.9067002 | 0.448673 | 46.017223 | 136.2267 | 6256.8632 |
MVO | 0.8323916 | 0.4152568 | 43.112935 | 165.20916 | 5999.4855 |
GWO | 0.7784443 | 0.3857682 | 40.320326 | 199.96571 | 5889.9468 |
TLBO | 1.5339616 | 0.4778123 | 47.429558 | 127.36717 | 10,629.675 |
GSA | 1.1173119 | 1.1297405 | 43.973024 | 191.12001 | 11,764.254 |
PSO | 1.5222025 | 0.6145174 | 62.315801 | 55.20521 | 9850.1299 |
GA | 1.3837426 | 0.7688899 | 57.605994 | 78.51226 | 10,738.52 |
Statistical results of optimization algorithms on pressure vessel design problem.
Algorithm | Mean | Best | Worst | Std | Median | Rank |
---|---|---|---|---|---|---|
POA | 5882.8955 | 5882.8955 | 5882.8955 | 1.92 × 10−12 | 5882.8955 | 1 |
WSO | 5890.9257 | 5882.9013 | 5962.0728 | 21.997434 | 5882.9017 | 3 |
AVOA | 6207.3916 | 5882.9075 | 7004.3405 | 348.84586 | 6041.7492 | 5 |
RSA | 12,174.081 | 7692.0978 | 19,482.674 | 3095.8917 | 11,204.142 | 9 |
MPA | 5882.9013 | 5882.9013 | 5882.9013 | 3.65 × 10−6 | 5882.9013 | 2 |
TSA | 6257.1233 | 5908.4196 | 6909.9332 | 329.83718 | 6134.2078 | 6 |
WOA | 7922.2943 | 6256.8632 | 12,555.602 | 1665.1308 | 7518.4095 | 8 |
MVO | 6495.1818 | 5999.4855 | 7008.2785 | 317.12575 | 6547.3182 | 7 |
GWO | 6007.6959 | 5889.9468 | 6642.5575 | 236.99908 | 5897.9847 | 4 |
TLBO | 27,465.413 | 10,629.675 | 58,347.67 | 13,658.123 | 24,286.567 | 12 |
GSA | 20,110.975 | 11,764.254 | 31,159.248 | 6644.7597 | 19,327.122 | 10 |
PSO | 28,828.623 | 9850.1299 | 49,094.713 | 12,786.567 | 31,741.352 | 13 |
GA | 24,722.523 | 10,738.52 | 44,100.29 | 10,720.864 | 21,949.806 | 11 |
Performance of optimization algorithms on speed reducer design problem.
Algorithm | Optimum Variables | Optimum Cost | ||||||
---|---|---|---|---|---|---|---|---|
b | M | p | l 1 | l 2 | d 1 | d 2 | ||
POA | 3.5 | 0.7 | 17 | 7.3 | 7.8 | 3.3502147 | 5.2866832 | 2996.3482 |
WSO | 3.5000004 | 0.7 | 17 | 7.3000084 | 7.8000004 | 3.3502148 | 5.2866833 | 2996.3483 |
AVOA | 3.5 | 0.7 | 17 | 7.3000006 | 7.8 | 3.3502147 | 5.2866832 | 2996.3482 |
RSA | 3.5782709 | 0.7 | 17 | 8.0827092 | 8.1913546 | 3.3548418 | 5.4536482 | 3154.7106 |
MPA | 3.5 | 0.7 | 17 | 7.3 | 7.8 | 3.3502147 | 5.2866832 | 2996.3482 |
TSA | 3.5109533 | 0.7 | 17 | 7.3 | 8.1913546 | 3.3504914 | 5.2896834 | 3011.2327 |
WOA | 3.5742812 | 0.7 | 17 | 7.3 | 7.9777636 | 3.3598929 | 5.2867448 | 3031.9314 |
MVO | 3.5019122 | 0.7 | 17 | 7.3 | 8.0284714 | 3.366672 | 5.2868519 | 3006.4419 |
GWO | 3.5005445 | 0.7 | 17 | 7.3043676 | 7.8 | 3.3618765 | 5.2884893 | 3000.7349 |
TLBO | 3.5476378 | 0.7033945 | 24.917693 | 7.9805293 | 8.0931464 | 3.6162006 | 5.3314146 | 4927.3723 |
GSA | 3.5194552 | 0.7023381 | 17.313478 | 7.7420374 | 7.8760975 | 3.3999447 | 5.3709689 | 3143.5799 |
PSO | 3.5069497 | 0.7000611 | 17.930439 | 7.3841039 | 7.8577718 | 3.5584711 | 5.3353772 | 3256.3667 |
GA | 3.5662501 | 0.7047261 | 17.691104 | 7.6758437 | 7.8474233 | 3.6485809 | 5.3373389 | 3294.0025 |
Statistical results of optimization algorithms on speed reducer design problem.
Algorithm | Mean | Best | Worst | Std | Median | Rank |
---|---|---|---|---|---|---|
POA | 2996.3482 | 2996.3482 | 2996.3482 | 9.58 × 10−13 | 2996.3482 | 1 |
WSO | 2996.5889 | 2996.3483 | 2998.4297 | 0.5101165 | 2996.3619 | 3 |
AVOA | 3000.1762 | 2996.3482 | 3008.8545 | 3.4609637 | 3000.0917 | 4 |
RSA | 3234.4969 | 3154.7106 | 3284.0135 | 50.166314 | 3247.1314 | 9 |
MPA | 2996.3482 | 2996.3482 | 2996.3482 | 2.78 × 10−6 | 2996.3482 | 2 |
TSA | 3026.7367 | 3011.2327 | 3038.3972 | 8.8440577 | 3028.2551 | 7 |
WOA | 3126.8766 | 3031.9314 | 3377.445 | 92.715236 | 3098.5654 | 8 |
MVO | 3024.7753 | 3006.4419 | 3059.0455 | 11.563388 | 3025.1488 | 6 |
GWO | 3003.374 | 3000.7349 | 3008.4394 | 2.1869003 | 3002.9342 | 5 |
TLBO | 5.907 × 1013 | 4927.3723 | 4.275 × 1014 | 1.01 × 1014 | 2.313 × 1013 | 12 |
GSA | 3385.5422 | 3143.5799 | 3912.9273 | 228.70017 | 3275.4427 | 10 |
PSO | 8.717 × 1013 | 3256.3667 | 4.416 × 1014 | 1.081 × 1014 | 6.235 × 1013 | 13 |
GA | 4.197 × 1013 | 3294.0025 | 2.709 × 1014 | 6.79 × 1013 | 1.682 × 1013 | 11 |
Performance of optimization algorithms on welded beam design problem.
Algorithm | Optimum Variables | Optimum Cost | |||
---|---|---|---|---|---|
h | l | t | b | ||
POA | 0.2057296 | 3.4704887 | 9.0366239 | 0.2057296 | 1.7246798 |
WSO | 0.2057292 | 3.4704885 | 9.0366237 | 0.2057291 | 1.7248523 |
AVOA | 0.2050803 | 3.4845704 | 9.0365333 | 0.2057338 | 1.7257584 |
RSA | 0.1980596 | 3.5249794 | 9.7906672 | 0.2159744 | 1.9375828 |
MPA | 0.2057296 | 3.4704887 | 9.0366239 | 0.2057296 | 1.7248523 |
TSA | 0.2044275 | 3.4916172 | 9.0600241 | 0.2060919 | 1.7324856 |
WOA | 0.2125196 | 3.3510058 | 8.9833094 | 0.2186902 | 1.8067407 |
MVO | 0.2059533 | 3.4656684 | 9.0434674 | 0.2060063 | 1.7278338 |
GWO | 0.2056128 | 3.4731682 | 9.0362981 | 0.2057883 | 1.7254222 |
TLBO | 0.2986976 | 4.2778023 | 7.1361343 | 0.3919305 | 2.8272527 |
GSA | 0.2805172 | 2.8349124 | 7.6654232 | 0.2924906 | 2.0300996 |
PSO | 0.3473169 | 3.4316063 | 7.6004377 | 0.5182734 | 3.675343 |
GA | 0.2214997 | 6.3937785 | 7.9559315 | 0.2894528 | 2.6042749 |
Statistical results of optimization algorithms on welded beam design problem.
Algorithm | Mean | Best | Worst | Std | Median | Rank |
---|---|---|---|---|---|---|
POA | 1.7246798 | 1.7246798 | 1.7246798 | 2.34 × 10−16 | 1.7246798 | 1 |
WSO | 1.7248526 | 1.7248523 | 1.724857 | 1.09 × 10−6 | 1.7248523 | 3 |
AVOA | 1.7557138 | 1.7257584 | 1.8248581 | 0.0317906 | 1.7439234 | 7 |
RSA | 2.1125267 | 1.9375828 | 2.4075717 | 0.1256523 | 2.0912766 | 8 |
MPA | 1.7248523 | 1.7248523 | 1.7248523 | 2.92 × 10−9 | 1.7248523 | 2 |
TSA | 1.7403814 | 1.7324856 | 1.7481834 | 0.0048867 | 1.7404631 | 6 |
WOA | 2.2220918 | 1.8067407 | 3.6950008 | 0.5593985 | 2.031176 | 9 |
MVO | 1.7387463 | 1.7278338 | 1.7674553 | 0.0119923 | 1.7352918 | 5 |
GWO | 1.7268895 | 1.7254222 | 1.7303217 | 0.001188 | 1.7266813 | 4 |
TLBO | 2.823 × 1013 | 2.8272527 | 2.724 × 1014 | 7.072 × 1013 | 5.0914359 | 12 |
GSA | 2.3349608 | 2.0300996 | 2.5968573 | 0.1669487 | 2.3600351 | 10 |
PSO | 3.893 × 1013 | 3.675343 | 2.357 × 1014 | 7.636 × 1013 | 5.9728379 | 13 |
GA | 9.556 × 1012 | 2.6042749 | 1.034 × 1014 | 3.013 × 1013 | 5.0630857 | 11 |
Performance of optimization algorithms on tension/compression spring design problem.
Algorithm | Optimum Variables | Optimum Cost | ||
---|---|---|---|---|
d | D | P | ||
POA | 0.0516891 | 0.3567177 | 11.288966 | 0.0126019 |
WSO | 0.0516874 | 0.3566773 | 11.291337 | 0.0126652 |
AVOA | 0.0512669 | 0.3466708 | 11.910602 | 0.0126694 |
RSA | 0.050367 | 0.3206032 | 14.193627 | 0.0130834 |
MPA | 0.0516905 | 0.3567522 | 11.286949 | 0.0126652 |
TSA | 0.0510947 | 0.3426132 | 12.187613 | 0.0126794 |
WOA | 0.0512453 | 0.3461621 | 11.94391 | 0.0126699 |
MVO | 0.050367 | 0.325522 | 13.492324 | 0.0127369 |
GWO | 0.0519158 | 0.3621859 | 10.980498 | 0.0126699 |
TLBO | 0.0653037 | 0.8107583 | 4.0184069 | 0.0167497 |
GSA | 0.0545928 | 0.4283484 | 8.3456483 | 0.0130117 |
PSO | 0.0652338 | 0.8081171 | 4.0184069 | 0.0166633 |
GA | 0.0657002 | 0.8173757 | 4.0184069 | 0.0170839 |
Statistical results of optimization algorithms on tension/compression spring design problem.
Algorithm | Mean | Best | Worst | Std | Median | Rank |
---|---|---|---|---|---|---|
POA | 0.0126019 | 0.0126019 | 0.0126019 | 7.07 × 10−18 | 0.0126019 | 1 |
WSO | 0.0126746 | 0.0126652 | 0.0127999 | 3.084 × 10−5 | 0.0126656 | 3 |
AVOA | 0.0132328 | 0.0126694 | 0.0139111 | 0.0004795 | 0.0131756 | 8 |
RSA | 0.0131519 | 0.0130834 | 0.0132725 | 5.968 × 10−5 | 0.0131343 | 6 |
MPA | 0.0126652 | 0.0126652 | 0.0126652 | 2.45 × 10−9 | 0.0126652 | 2 |
TSA | 0.0129142 | 0.0126794 | 0.0133863 | 0.0002078 | 0.0128525 | 5 |
WOA | 0.0131737 | 0.0126699 | 0.014201 | 0.0005197 | 0.0130077 | 7 |
MVO | 0.0158555 | 0.0127369 | 0.0170594 | 0.0014169 | 0.0166225 | 9 |
GWO | 0.0127136 | 0.0126699 | 0.0129006 | 4.757 × 10−5 | 0.0127115 | 4 |
TLBO | 0.0171949 | 0.0167497 | 0.0177033 | 0.0003079 | 0.0171578 | 10 |
GSA | 0.0183255 | 0.0130117 | 0.0289135 | 0.003664 | 0.0179686 | 11 |
PSO | 1.752 × 1013 | 0.0166633 | 3.109 × 1014 | 7.145 × 1013 | 0.0166633 | 13 |
GA | 1.369 × 1012 | 0.0170839 | 1.416 × 1013 | 4.198 × 1012 | 0.0234606 | 12 |
Appendix A
The optimal value (OV) for each test function of the CEC 2017 test suite is presented in
The optimal values of CEC 2017 test suite.
function | C17-F1 | C17-F2 | C17-F3 | C17-F4 | C17-F5 | C17-F6 | C17-F7 | C17-F8 | C17-F9 | C17-F10 | C17-F11 | C17-F12 | C17-F13 | C17-F14 | C17-F15 |
OV | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | 1000 | 1100 | 1200 | 1300 | 1400 | 1500 |
function | C17-F16 | C17-F17 | C17-F18 | C17-F19 | C17-F20 | C17-F21 | C17-F22 | C17-F23 | C17-F24 | C17-F25 | C17-F26 | C17-F27 | C17-F28 | C17-F29 | C17-F30 |
OV | 1600 | 1700 | 1800 | 1900 | 2000 | 2100 | 2200 | 2300 | 2400 | 2500 | 2600 | 2700 | 2800 | 2900 | 3000 |
References
1. Zhao, S.; Zhang, T.; Ma, S.; Chen, M. Dandelion Optimizer: A nature-inspired metaheuristic algorithm for engineering applications. Eng. Appl. Artif. Intell.; 2022; 114, 105075. [DOI: https://dx.doi.org/10.1016/j.engappai.2022.105075]
2. Sergeyev, Y.D.; Kvasov, D.; Mukhametzhanov, M. On the efficiency of nature-inspired metaheuristics in expensive global optimization with limited budget. Sci. Rep.; 2018; 8, 453. [DOI: https://dx.doi.org/10.1038/s41598-017-18940-4] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29323223]
3. Liberti, L.; Kucherenko, S. Comparison of deterministic and stochastic approaches to global optimization. Int. Trans. Oper. Res.; 2005; 12, pp. 263-285. [DOI: https://dx.doi.org/10.1111/j.1475-3995.2005.00503.x]
4. Alshanti, W.G.; Batiha, I.M.; Hammad, M.A.; Khalil, R. A novel analytical approach for solving partial differential equations via a tensor product theory of Banach spaces. Partial Differ. Equ. Appl. Math.; 2023; 8, 100531. [DOI: https://dx.doi.org/10.1016/j.padiff.2023.100531]
5. Dehghani, M.; Trojovská, E.; Trojovský, P. A new human-based metaheuristic algorithm for solving optimization problems on the base of simulation of driving training process. Sci. Rep.; 2022; 12, 9924. [DOI: https://dx.doi.org/10.1038/s41598-022-14225-7] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/35705720]
6. Matoušová, I.; Trojovský, P.; Dehghani, M.; Trojovská, E.; Kostra, J. Mother optimization algorithm: A new human-based metaheuristic approach for solving engineering optimization. Sci. Rep.; 2023; 13, 10312. [DOI: https://dx.doi.org/10.1038/s41598-023-37537-8] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/37365283]
7. de Armas, J.; Lalla-Ruiz, E.; Tilahun, S.L.; Voß, S. Similarity in metaheuristics: A gentle step towards a comparison methodology. Nat. Comput.; 2022; 21, pp. 265-287. [DOI: https://dx.doi.org/10.1007/s11047-020-09837-9]
8. Trojovský, P.; Dehghani, M. A new optimization algorithm based on mimicking the voting process for leader selection. PeerJ Comput. Sci.; 2022; 8, e976. [DOI: https://dx.doi.org/10.7717/peerj-cs.976]
9. Zhao, W.; Wang, L.; Zhang, Z.; Fan, H.; Zhang, J.; Mirjalili, S.; Khodadadi, N.; Cao, Q. Electric eel foraging optimization: A new bio-inspired optimizer for engineering applications. Expert Syst. Appl.; 2024; 238, 122200. [DOI: https://dx.doi.org/10.1016/j.eswa.2023.122200]
10. Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput.; 1997; 1, pp. 67-82. [DOI: https://dx.doi.org/10.1109/4235.585893]
11. Kennedy, J.; Eberhart, R. Particle Swarm Optimization. Proceedings of ICNN’95—International Conference on Neural Networks; Perth, WA, Australia, 27 November–1 December 1995; IEEE: Perth, WA, Australia, 1995; Volume 4, pp. 1942-1948.
12. Dorigo, M.; Maniezzo, V.; Colorni, A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B; 1996; 26, pp. 29-41. [DOI: https://dx.doi.org/10.1109/3477.484436] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18263004]
13. Karaboga, D.; Basturk, B. Artificial Bee Colony (ABC) Optimization Algorithm for Solving Constrained Optimization Problems. Proceedings of the International Fuzzy Systems Association World Congress; Cancun, Mexico, 18–21 June 2007; Springer: Berlin/Heidelberg, Germany, 2007; pp. 789-798.
14. Yang, X.-S. Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-Inspired Comput.; 2010; 2, pp. 78-84. [DOI: https://dx.doi.org/10.1504/IJBIC.2010.032124]
15. Trojovský, P.; Dehghani, M. Pelican Optimization Algorithm: A Novel Nature-Inspired Algorithm for Engineering Applications. Sensors; 2022; 22, 855. [DOI: https://dx.doi.org/10.3390/s22030855] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/35161600]
16. Hashim, F.A.; Hussien, A.G. Snake Optimizer: A novel meta-heuristic optimization algorithm. Knowl.-Based Syst.; 2022; 242, 108320. [DOI: https://dx.doi.org/10.1016/j.knosys.2022.108320]
17. Masadeh, R.; Mahafzah, B.A.; Sharieh, A. Sea lion optimization algorithm. Int. J. Adv. Comput. Sci. Appl.; 2019; 10, pp. 388-395. [DOI: https://dx.doi.org/10.14569/IJACSA.2019.0100548]
18. Zervoudakis, K.; Tsafarakis, S. A global optimizer inspired from the survival strategies of flying foxes. Eng. Comput.; 2023; 39, pp. 1583-1616. [DOI: https://dx.doi.org/10.1007/s00366-021-01554-w]
19. Zervoudakis, K.; Tsafarakis, S. A mayfly optimization algorithm. Comput. Ind. Eng.; 2020; 145, 106559. [DOI: https://dx.doi.org/10.1016/j.cie.2020.106559]
20. Braik, M.; Hammouri, A.; Atwan, J.; Al-Betar, M.A.; Awadallah, M.A. White Shark Optimizer: A novel bio-inspired meta-heuristic algorithm for global optimization problems. Knowl.-Based Syst.; 2022; 243, 108457. [DOI: https://dx.doi.org/10.1016/j.knosys.2022.108457]
21. Abdollahzadeh, B.; Gharehchopogh, F.S.; Mirjalili, S. African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems. Comput. Ind. Eng.; 2021; 158, 107408. [DOI: https://dx.doi.org/10.1016/j.cie.2021.107408]
22. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw.; 2014; 69, pp. 46-61. [DOI: https://dx.doi.org/10.1016/j.advengsoft.2013.12.007]
23. Abualigah, L.; Abd Elaziz, M.; Sumari, P.; Geem, Z.W.; Gandomi, A.H. Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer. Expert Syst. Appl.; 2022; 191, 116158. [DOI: https://dx.doi.org/10.1016/j.eswa.2021.116158]
24. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw.; 2016; 95, pp. 51-67. [DOI: https://dx.doi.org/10.1016/j.advengsoft.2016.01.008]
25. Chopra, N.; Ansari, M.M. Golden Jackal Optimization: A Novel Nature-Inspired Optimizer for Engineering Applications. Expert Syst. Appl.; 2022; 198, 116924. [DOI: https://dx.doi.org/10.1016/j.eswa.2022.116924]
26. Hashim, F.A.; Houssein, E.H.; Hussain, K.; Mabrouk, M.S.; Al-Atabany, W. Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems. Math. Comput. Simul.; 2022; 192, pp. 84-110. [DOI: https://dx.doi.org/10.1016/j.matcom.2021.08.013]
27. Faramarzi, A.; Heidarinejad, M.; Mirjalili, S.; Gandomi, A.H. Marine Predators Algorithm: A nature-inspired metaheuristic. Expert Syst. Appl.; 2020; 152, 113377. [DOI: https://dx.doi.org/10.1016/j.eswa.2020.113377]
28. Jiang, Y.; Wu, Q.; Zhu, S.; Zhang, L. Orca predation algorithm: A novel bio-inspired algorithm for global optimization problems. Expert Syst. Appl.; 2022; 188, 116026. [DOI: https://dx.doi.org/10.1016/j.eswa.2021.116026]
29. Kaur, S.; Awasthi, L.K.; Sangal, A.L.; Dhiman, G. Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell.; 2020; 90, 103541. [DOI: https://dx.doi.org/10.1016/j.engappai.2020.103541]
30. Goldberg, D.E.; Holland, J.H. Genetic Algorithms and Machine Learning. Mach. Learn.; 1988; 3, pp. 95-99. [DOI: https://dx.doi.org/10.1023/A:1022602019183]
31. Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim.; 1997; 11, pp. 341-359. [DOI: https://dx.doi.org/10.1023/A:1008202821328]
32. De Castro, L.N.; Timmis, J.I. Artificial immune systems as a novel soft computing paradigm. Soft Comput.; 2003; 7, pp. 526-544. [DOI: https://dx.doi.org/10.1007/s00500-002-0237-z]
33. Reynolds, R.G. An Introduction to Cultural Algorithms. Proceedings of the Third Annual Conference on Evolutionary Programming; San Diego, CA, USA, 24–26 February 1994; World Scientific: Singapore, 1994; pp. 131-139.
34. Koza, J.R.; Koza, J.R. Genetic Programming: On the Programming of Computers by Means of Natural Selection; MIT Press: Cambridge, MA, USA, 1992; Volume 1.
35. Beyer, H.-G.; Schwefel, H.-P. Evolution strategies–a comprehensive introduction. Nat. Comput.; 2002; 1, pp. 3-52. [DOI: https://dx.doi.org/10.1023/A:1015059928466]
36. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science; 1983; 220, pp. 671-680. [DOI: https://dx.doi.org/10.1126/science.220.4598.671] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17813860]
37. Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: A gravitational search algorithm. Inf. Sci.; 2009; 179, pp. 2232-2248. [DOI: https://dx.doi.org/10.1016/j.ins.2009.03.004]
38. Dehghani, M.; Samet, H. Momentum search algorithm: A new meta-heuristic optimization algorithm inspired by momentum conservation law. SN Appl. Sci.; 2020; 2, 1720. [DOI: https://dx.doi.org/10.1007/s42452-020-03511-6]
39. Dehghani, M.; Montazeri, Z.; Dhiman, G.; Malik, O.; Morales-Menendez, R.; Ramirez-Mendoza, R.A.; Dehghani, A.; Guerrero, J.M.; Parra-Arroyo, L. A spring search algorithm applied to engineering optimization problems. Appl. Sci.; 2020; 10, 6173. [DOI: https://dx.doi.org/10.3390/app10186173]
40. Eskandar, H.; Sadollah, A.; Bahreininejad, A.; Hamdi, M. Water cycle algorithm–A novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput. Struct.; 2012; 110, pp. 151-166. [DOI: https://dx.doi.org/10.1016/j.compstruc.2012.07.010]
41. Hashim, F.A.; Mostafa, R.R.; Hussien, A.G.; Mirjalili, S.; Sallam, K.M. Fick’s Law Algorithm: A physical law-based algorithm for numerical optimization. Knowl.-Based Syst.; 2023; 260, 110146. [DOI: https://dx.doi.org/10.1016/j.knosys.2022.110146]
42. Kundu, R.; Chattopadhyay, S.; Nag, S.; Navarro, M.A.; Oliva, D. Prism refraction search: A novel physics-based metaheuristic algorithm. J. Supercomput.; 2024; [DOI: https://dx.doi.org/10.1007/s11227-023-05790-3]
43. Hashim, F.A.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W.; Mirjalili, S. Henry gas solubility optimization: A novel physics-based algorithm. Future Gener. Comput. Syst.; 2019; 101, pp. 646-667. [DOI: https://dx.doi.org/10.1016/j.future.2019.07.015]
44. Hatamlou, A. Black hole: A new heuristic optimization approach for data clustering. Inf. Sci.; 2013; 222, pp. 175-184. [DOI: https://dx.doi.org/10.1016/j.ins.2012.08.023]
45. Wei, Z.; Huang, C.; Wang, X.; Han, T.; Li, Y. Nuclear reaction optimization: A novel and powerful physics-based algorithm for global optimization. IEEE Access; 2019; 7, pp. 66084-66109. [DOI: https://dx.doi.org/10.1109/ACCESS.2019.2918406]
46. Faramarzi, A.; Heidarinejad, M.; Stephens, B.; Mirjalili, S. Equilibrium optimizer: A novel optimization algorithm. Knowl.-Based Syst.; 2020; 191, 105190. [DOI: https://dx.doi.org/10.1016/j.knosys.2019.105190]
47. Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A. Multi-verse optimizer: A nature-inspired algorithm for global optimization. Neural Comput. Appl.; 2016; 27, pp. 495-513. [DOI: https://dx.doi.org/10.1007/s00521-015-1870-7]
48. Pereira, J.L.J.; Francisco, M.B.; Diniz, C.A.; Oliver, G.A.; Cunha Jr, S.S.; Gomes, G.F. Lichtenberg algorithm: A novel hybrid physics-based meta-heuristic for global optimization. Expert Syst. Appl.; 2021; 170, 114522. [DOI: https://dx.doi.org/10.1016/j.eswa.2020.114522]
49. Hashim, F.A.; Hussain, K.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W. Archimedes optimization algorithm: A new metaheuristic algorithm for solving optimization problems. Appl. Intell.; 2021; 51, pp. 1531-1551. [DOI: https://dx.doi.org/10.1007/s10489-020-01893-z]
50. Kaveh, A.; Dadras, A. A novel meta-heuristic optimization algorithm: Thermal exchange optimization. Adv. Eng. Softw.; 2017; 110, pp. 69-84. [DOI: https://dx.doi.org/10.1016/j.advengsoft.2017.03.014]
51. Cuevas, E.; Oliva, D.; Zaldivar, D.; Pérez-Cisneros, M.; Sossa, H. Circle detection using electro-magnetism optimization. Inf. Sci.; 2012; 182, pp. 40-55. [DOI: https://dx.doi.org/10.1016/j.ins.2010.12.024]
52. Rao, R.V.; Savsani, V.J.; Vakharia, D. Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Comput.-Aided Des.; 2011; 43, pp. 303-315. [DOI: https://dx.doi.org/10.1016/j.cad.2010.12.015]
53. Trojovská, E.; Dehghani, M. A new human-based metahurestic optimization method based on mimicking cooking training. Sci. Rep.; 2022; 12, 14861. [DOI: https://dx.doi.org/10.1038/s41598-022-19313-2]
54. Dehghani, M.; Trojovský, P. Teamwork Optimization Algorithm: A New Optimization Approach for Function Minimization/Maximization. Sensors; 2021; 21, 4567. [DOI: https://dx.doi.org/10.3390/s21134567]
55. Ayyarao, T.L.; RamaKrishna, N.; Elavarasam, R.M.; Polumahanthi, N.; Rambabu, M.; Saini, G.; Khan, B.; Alatas, B. War Strategy Optimization Algorithm: A New Effective Metaheuristic Algorithm for Global Optimization. IEEE Access; 2022; 10, pp. 25073-25105. [DOI: https://dx.doi.org/10.1109/ACCESS.2022.3153493]
56. Braik, M.; Ryalat, M.H.; Al-Zoubi, H. A novel meta-heuristic algorithm for solving numerical optimization problems: Ali Baba and the forty thieves. Neural Comput. Appl.; 2022; 34, pp. 409-455. [DOI: https://dx.doi.org/10.1007/s00521-021-06392-x]
57. Mohamed, A.W.; Hadi, A.A.; Mohamed, A.K. Gaining-sharing knowledge based algorithm for solving optimization problems: A novel nature-inspired algorithm. Int. J. Mach. Learn. Cybern.; 2020; 11, pp. 1501-1529. [DOI: https://dx.doi.org/10.1007/s13042-019-01053-x]
58. Al-Betar, M.A.; Alyasseri, Z.A.A.; Awadallah, M.A.; Abu Doush, I. Coronavirus herd immunity optimizer (CHIO). Neural Comput. Appl.; 2021; 33, pp. 5011-5042. [DOI: https://dx.doi.org/10.1007/s00521-020-05296-6] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32874019]
59. Dehghani, M.; Montazeri, Z.; Givi, H.; Guerrero, J.M.; Dhiman, G. Darts game optimizer: A new optimization technique based on darts game. Int. J. Intell. Eng. Syst.; 2020; 13, pp. 286-294. [DOI: https://dx.doi.org/10.22266/ijies2020.1031.26]
60. Montazeri, Z.; Niknam, T.; Aghaei, J.; Malik, O.P.; Dehghani, M.; Dhiman, G. Golf Optimization Algorithm: A New Game-Based Metaheuristic Algorithm and Its Application to Energy Commitment Problem Considering Resilience. Biomimetics; 2023; 8, 386. [DOI: https://dx.doi.org/10.3390/biomimetics8050386]
61. Zeidabadi, F.A.; Dehghani, M. POA: Puzzle Optimization Algorithm. Int. J. Intell. Eng. Syst.; 2022; 15, pp. 273-281.
62. Moghdani, R.; Salimifard, K. Volleyball premier league algorithm. Appl. Soft Comput.; 2018; 64, pp. 161-185. [DOI: https://dx.doi.org/10.1016/j.asoc.2017.11.043]
63. Ma, B.; Hu, Y.; Lu, P.; Liu, Y. Running city game optimizer: A game-based metaheuristic optimization algorithm for global optimization. J. Comput. Des. Eng.; 2023; 10, pp. 65-107. [DOI: https://dx.doi.org/10.1093/jcde/qwac131]
64. Kaveh, A.; Zolghadr, A. A Novel Meta-Heuristic Algorithm: Tug of War Optimization. Int. J. Optim. Civ. Eng.; 2016; 6, pp. 469-492.
65. John R, P.; Eschmeyer, W.N. Encyclopedia of Fishes; 2nd ed. Academic Press: San Diego, CA, USA, 1998.
66. Brainerd, E.L.; Patek, S.N. Vertebral column morphology, C-start curvature, and the evolution of mechanical defenses in tetraodontiform fishes. Copeia; 1998; 1998, pp. 971-984. [DOI: https://dx.doi.org/10.2307/1447344]
67. Awad, N.; Ali, M.; Liang, J.; Qu, B.; Suganthan, P.; Definitions, P. Evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization. Technol. Rep.; 2016.
68. Wilcoxon, F. Individual Comparisons by Ranking Methods. Breakthroughs in Statistics; Springer: Berlin/Heidelberg, Germany, 1992; pp. 196-202.
69. Das, S.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for CEC 2011 Competition on Testing Evolutionary Algorithms on Real World Optimization Problems; Jadavpur University, Nanyang Technological University: Kolkata, India, 2010; pp. 341-359.
70. Kannan, B.; Kramer, S.N. An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J. Mech. Des.; 1994; 116, pp. 405-411. [DOI: https://dx.doi.org/10.1115/1.2919393]
71. Gandomi, A.H.; Yang, X.-S. Benchmark Problems in Structural Optimization. Computational Optimization, Methods and Algorithms; Springer: Berlin/Heidelberg, Germany, 2011; pp. 259-281.
72. Mezura-Montes, E.; Coello, C.A.C. Useful Infeasible Solutions in Engineering Optimization with Evolutionary Algorithms. Proceedings of the Mexican International Conference on Artificial Intelligence; Monterrey, Mexico, 14–18 November 2005; Springer: Berlin/Heidelberg, Germany, 2005; pp. 652-662.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
A new bio-inspired metaheuristic algorithm named the Pufferfish Optimization Algorithm (POA), that imitates the natural behavior of pufferfish in nature, is introduced in this paper. The fundamental inspiration of POA is adapted from the defense mechanism of pufferfish against predators. In this defense mechanism, by filling its elastic stomach with water, the pufferfish becomes a spherical ball with pointed spines, and as a result, the hungry predator escapes from this threat. The POA theory is stated and then mathematically modeled in two phases: (i) exploration based on the simulation of a predator’s attack on a pufferfish and (ii) exploitation based on the simulation of a predator’s escape from spiny spherical pufferfish. The performance of POA is evaluated in handling the CEC 2017 test suite for problem dimensions equal to 10, 30, 50, and 100. The optimization results show that POA has achieved an effective solution with the appropriate ability in exploration, exploitation, and the balance between them during the search process. The quality of POA in the optimization process is compared with the performance of twelve well-known metaheuristic algorithms. The simulation results show that POA provides superior performance by achieving better results in most of the benchmark functions in order to solve the CEC 2017 test suite compared to competitor algorithms. Also, the effectiveness of POA to handle optimization tasks in real-world applications is evaluated on twenty-two constrained optimization problems from the CEC 2011 test suite and four engineering design problems. Simulation results show that POA provides effective performance in handling real-world applications by achieving better solutions compared to competitor algorithms.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details






1 Department of Software Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan;
2 ISBM COE, Faculty of Science and Information Technology, Software Engineering, Jadara University, Irbid 21110, Jordan;
3 Department of Mathematics, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
4 Symbiosis Institute of Digital and Telecom Management, Constituent of Symbiosis International Deemed University, Pune 412115, India;
5 Neuroscience Research Institute, Samara State Medical University, 89 Chapaevskaya Street, 443001 Samara, Russia;
6 Former Dean of Life Sciences and Head of Zoology Department, Celland Molecular Biology, Toxicology Laboratory, Department of Zoology, Cotton University, Guwahati 781001, India;
7 Department of Electrical and Software Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada;
8 Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz 7155713876, Iran;