It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Intracranial vessel wall imaging (VWI), which requires both high spatial resolution and high signal-to-noise ratio (SNR), is an ideal candidate for deep learning (DL)-based image quality improvement. Conventional VWI (Conv-VWI, voxel size 0.51 × 0.51 × 0.45 mm3) and denoised super-resolution DL-VWI (0.28 × 0.28 × 0.45 mm3) of 117 patients were analyzed in this retrospective study. Quality of the images were compared qualitatively and quantitatively. Diagnostic performance for identifying potentially culprit atherosclerotic plaques, using lesion enhancement and presence of intraplaque hemorrhage (IPH), was evaluated. DL-VWI significantly outperformed Conv-VWI in all image quality ratings (all P < .001). DL-VWI demonstrated higher SNR and contrast-to-noise ratio (CNR) than Conv-VWI, both in normal walls (basilar artery; SNR 4.83 ± 1.23 vs. 3.02 ± 0.59, P < .001) and lesions (contrast-enhanced images; SNR 22.12 ± 11.68 vs. 8.33 ± 3.26, P < .001). In the assessment of 86 lesions, DL-VWI showed higher confidence of detection (4.56 ± 0.55 vs. 2.62 ± 0.77, P < .001), more concordant IPH characterization (Cohen’s Kappa 0.85 vs. 0.59) and greater enhancement. For culprit plaque identification, IPH exhibited higher sensitivity in DL-VWI compared to Conv-VWI (70.6% vs. 23.5%) and excellent specificity (94.3% vs. 94.3%). Deep learning application of intracranial vessel wall images successfully improved the quality and resolution of the images. This aided in detecting vessel wall lesions and intraplaque hemorrhage, and in identifying potentially culprit atherosclerotic plaques.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Seoul St. Mary’s Hospital, The Catholic University of Korea, Department of Radiology, College of Medicine, Seoul, Republic of Korea (GRID:grid.414966.8) (ISNI:0000 0004 0647 5752)
2 AIRS Medical, Seoul, Republic of Korea (GRID:grid.414966.8)