Full text

Turn on search term navigation

© 2024 Gomes et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

Micro-osteoperforation is a minimally invasive technique aimed at accelerating tooth movement. The goal of this novel experimental study was to assess tooth movement and stress distribution produced by the force of orthodontic movement on the tooth structure, periodontal ligament, and maxillary bone structure, with and without micro-osteoperforation, using the finite element method.

Materials and methods

Cone-beam computed tomography was used to obtain a virtual model of the maxilla and simulate the extraction of right and left first premolars. Three micro-osteoperforations (1.5 x 5 mm) were made in the hemiarch on the distal and mesial surfaces of upper canines, according to the power tip geometry of the Propel device (Propel Orthodontics, Ossining, New York, USA). An isotropic model of the maxilla was fabricated according to the finite element method by insertion of mechanical properties of the tooth structures, with orthodontic force (1.5 N) simulation in the distal movement on the upper canine of a hemiarch.

Results

Initial movement was larger when micro-osteoperforations were performed on the dental crown (24%) and on the periodontal ligament (29%). In addition, stress distribution was higher on the bone structure (31%) when micro-osteoperforations were used.

Conclusions

Micro-osteoperforations considerably increased the movement of both the dental crown and periodontal ligament, which highlights their importance in the improvement of orthodontic movement, as well as in stress distribution across the bone structure. Important stress absorption regions were identified within micro-osteoperforations.

Details

Title
Micro-osteoperforation for enhancement of orthodontic movement: A mechanical analysis using the finite element method
Author
João Ricardo Cancian Lagomarcino Gomes  VIAFID ORCID Logo  ; Vargas, Ivana Ardenghi; Antônio Flávio Aires Rodrigues; Gertz, Luiz Carlos; Freitas, Maria Perpétua; Sergio Augusto Quevedo Miguens Jr.; Ozkomur, Ahmet; González Hernandez, Pedro Antonio
First page
e0308739
Section
Research Article
Publication year
2024
Publication date
Aug 2024
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3094725490
Copyright
© 2024 Gomes et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.