It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Rice is a staple food in the diets of more than half of the world's population. With India's irregular rainfall patterns and continual environmental anomalies, particularly in Kerala, the identification of climate-smart management practices which can withstand drought is critical. In this context, atrial was conducted in the experimental plots to evolve effective water and nutrient management practices under aerobic rice in lateritic soils of Kerala. However, during the experiment in a few treatments, rolling of leaves was observed, and when explored for the reasons, it was due to soil moisture deficit and plant water stress. When compared to other crop species, rice is highly vulnerable to water deficit. In this regard, an attempt has been made to study the leaf rolling pattern in aerobic rice and how this can be managed with a few soil amendments so that rice productivity can be sustained. The results showed that plant growth parameters, relative water content (RWC), membrane leakage (ML) and spectral signatures were significantly affected by the leaf rolling. It was found that leaf rolling affected plants have less RWC and higher ML and are under drought stress. Pearson correlation analysis showed a strong positive correlation (P < 0.05) of key spectral indices with other physiological traits such as RWC and negatively correlated with ML. Moisture absorbent media such as cocopeat, compost, saw dust and vermiculite were attempted as management strategies to overcome this stress. Results showed that among the absorbents attmepted, cocopeat was found to be better in managing the stress. These results suggest that for aerobic rice under lateritic soil, moisture absorbent media such as cocopeat, has to be incorporated so that it can reduce the rate of leaf rolling thereby sustaining the paddy yield.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 KSCSTE- Centre for Water Resources Development and Management (CWRDM), Land and Water Management Research Group, Kozhikode, India (GRID:grid.464826.a) (ISNI:0000 0004 1756 4291); University of Calicut, Calicut University PO, Tenhipalam, India (GRID:grid.413100.7) (ISNI:0000 0001 0353 9464)
2 KSCSTE- Centre for Water Resources Development and Management (CWRDM), Land and Water Management Research Group, Kozhikode, India (GRID:grid.464826.a) (ISNI:0000 0004 1756 4291); ICAR-National Bureau of Soil Survey Land Use Planning, Division of Remote Sensing Applications, Nagpur, India (GRID:grid.464954.e) (ISNI:0000 0001 2109 477X)
3 King Saud University, Department of Botany and Microbiology, College of Science, Riyadh, Saudi Arabia (GRID:grid.56302.32) (ISNI:0000 0004 1773 5396)