Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Featured Application

The work reported in this paper contributes to the further improvement of the reverse-time migration imaging accuracy of VSP data, which has broad application prospects for oil and gas exploration of unconventional reservoirs.

Abstract

Vertical seismic profiling has garnered widespread attention in the industry as a supplement to seismic exploration due to its higher data quality compared to surface seismic data. However, its unique observation system in which geophones are only distributed within observation wells results in uneven coverage of subsurface structures. This can lead to significant noise when directly applying conventional reverse-time migration techniques used in surface seismic imaging. This study addresses the issue of noise suppression in reverse-time migration imaging associated with walk-away vertical seismic profiling and presents two main innovations. First, a common-receiver reverse-time migration imaging method is proposed, which uses the observation signals as excitation signals for the corresponding shots after reverse-time processing. Second, an excitation-time-constrained cross-correlation imaging condition is introduced to eliminate non-contributing portions of the wavefield, thereby modifying the traditional cross-correlation imaging condition to include an excitation time constraint. The combination of these methods enhances imaging quality by effectively suppressing noise, as demonstrated through theoretical analysis and numerical simulations with synthetic models.

Details

Title
Efficient Method for Enhancing Reverse-Time Migration Images Using Vertical Seismic Profiling Data
Author
Cai, Lu 1 ; Liu, Youming 2   VIAFID ORCID Logo 

 School of Communication and Information Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China 
 School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China; [email protected] 
First page
7268
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3097821805
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.