Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background: Augmenting auditory feedback through an error-augmentation paradigm could facilitate the perception and correction of gait asymmetry in stroke survivors, but how such a paradigm should be tailored to individual asymmetry profiles remains unclear. Before implementing the paradigm in rehabilitation, we need to investigate the instantaneous effects of distorted footstep sound feedback on gait symmetry in healthy young adults. Methods: Participants (n = 12) walked on a self-paced treadmill while listening to their footstep sounds, which were distorted unilaterally according to five conditions presented randomly: small delay; small advance; large delay; large advance; or unmodified (control). The primary outcomes were swing time ratio (SWR) and step length ratio (SLR). Secondary outcomes included walking speed, bilateral swing time, step length, and maximum toe height, as well as hip, knee, and ankle angle excursions. Results: SWR (p < 0.001) but not SLR (p ≥ 0.05) was increased in all distorted feedback conditions compared to the control condition. Increased swing time on the perturbed side ipsilateral to feedback distortion was observed in the advanced conditions (p < 0.001), while swing time increased bilaterally in the delayed conditions (p < 0.001) but to a larger extent on the unperturbed side contralateral to feedback distortion. Increases in swing time were accompanied by larger maximum toe height as well as larger hip and knee joint excursions (p < 0.05 to p < 0.001). No differences in any outcomes were observed between small and large feedback distortion magnitudes. Conclusions: Distorted footstep sound feedback successfully elicits adaptation in temporal gait symmetry (SWR), with distinct modulation patterns for advanced vs. delayed footstep sounds. Spatial symmetry (SLR) remains unaltered, likely because auditory feedback primarily conveys temporal information. This research lays the groundwork to implement personalized augmented auditory feedback in neurorehabilitation.

Details

Title
Application of an Auditory-Based Feedback Distortion to Modify Gait Symmetry in Healthy Individuals
Author
Le Yu Liu 1   VIAFID ORCID Logo  ; Sangani, Samir 2 ; Patterson, Kara K 3   VIAFID ORCID Logo  ; Fung, Joyce 1   VIAFID ORCID Logo  ; Lamontagne, Anouk 1   VIAFID ORCID Logo 

 School of Physical and Occupational Therapy, McGill University, Montreal, QC H3G1Y5, Canada; Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital Site of CISSS-Laval and Research Site of the Montreal Centre for Interdisciplinary Research in Rehabilitation (CRIR), Laval, QC H7V1R2, Canada 
 Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital Site of CISSS-Laval and Research Site of the Montreal Centre for Interdisciplinary Research in Rehabilitation (CRIR), Laval, QC H7V1R2, Canada 
 Department of Physical Therapy and Rehabilitation Science Institute, University of Toronto, Toronto, ON M5G1V7, Canada; KITE-Toronto Rehabilitation Institute, Toronto, ON M5G2A2, Canada 
First page
798
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20763425
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3097838530
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.