Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Herein, we present a novel approach to quantify ferritin based on the integration of an Enzyme-Linked Immunosorbent Assay (ELISA) protocol on a Graphene Field-Effect Transistor (gFET) for bioelectronic immunosensing. The G-ELISA strategy takes advantage of the gFET inherent capability of detecting pH changes for the amplification of ferritin detection using urease as a reporter enzyme, which catalyzes the hydrolysis of urea generating a local pH increment. A portable field-effect transistor reader and electrolyte-gated gFET arrangement are employed, enabling their operation in aqueous conditions at low potentials, which is crucial for effective biological sample detection. The graphene surface is functionalized with monoclonal anti-ferritin antibodies, along with an antifouling agent, to enhance the assay specificity and sensitivity. Markedly, G-ELISA exhibits outstanding sensing performance, reaching a lower limit of detection (LOD) and higher sensitivity in ferritin quantification than unamplified gFETs. Additionally, they offer rapid detection, capable of measuring ferritin concentrations in approximately 50 min. Because of the capacity of transistor miniaturization, our innovative G-ELISA approach holds promise for the portable bioelectronic detection of multiple biomarkers using a small amount of the sample, which would be a great advancement in point–of–care testing.

Details

Title
Digitalization of Enzyme-Linked Immunosorbent Assay with Graphene Field-Effect Transistors (G-ELISA) for Portable Ferritin Determination
Author
Candia, Melody L; Piccinini, Esteban; Azzaroni, Omar; Marmisollé, Waldemar A  VIAFID ORCID Logo 
First page
394
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20796374
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3097851680
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.