Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this work, we describe the design, manufacturing development, and refinement of a chemical detection platform designed to identify specific odorants in the natural gas industry. As the demand for reliable and sensitive volatile organic compound (VOC) detection systems is growing, our project aimed to construct multiple prototypes to enhance our detection capabilities and provide portable detection platforms. Throughout the development process across nominally identical and duplicated instruments, various failure modes were encountered, which provided insight into the design and manufacturing challenges present when designing such platforms. We conducted a post hoc root cause analysis for each failure mode, leading to a series of design modifications and solutions. This paper details these design and manufacturing challenges, the analytical methods used to diagnose and address them, and the resulting improvements in system performance. In the end, a debugging flow chart is presented to aid future researchers in solving the possible issues that could be encountered. Our findings show the complexities of bespoke chemical sensor design for unique applications and highlight the critical importance of iterative testing and problem-solving in the development of industrial detection technologies. Achieving consistency across devices is essential for optimizing device-to-device efficiency. The work presented is the first step towards ensuring uniform performance across a production run of chemically sensitive devices. In the future, a universal device calibration model will be implemented, eliminating the need to collect data from each individual device.

Details

Title
A Diagnostic Case Study for Manufacturing Gas-Phase Chemical Sensors
Author
Raquel Pimentel Contreras 1 ; Koch, Dylan T 2   VIAFID ORCID Logo  ; Gibson, Patrick 1   VIAFID ORCID Logo  ; McCartney, Mitchell M 3   VIAFID ORCID Logo  ; Chew, Bradley S 1   VIAFID ORCID Logo  ; Chakraborty, Pranay 1   VIAFID ORCID Logo  ; Chevy, Daniel A 2   VIAFID ORCID Logo  ; Honeycutt, Reid 1 ; Haun, Joseph 2 ; Griffin, Thomas 2 ; Hicks, Tristan L 1   VIAFID ORCID Logo  ; Davis, Cristina E 3 

 Department of Mechanical and Aerospace Engineering, University of California Davis, Davis, CA 95616, USA; UC Davis Lung Center, One Shields Avenue, Davis, CA 95616, USA 
 UC Davis Lung Center, One Shields Avenue, Davis, CA 95616, USA; Department of Electrical Engineering, University of California Davis, Davis, CA 95616, USA 
 Department of Mechanical and Aerospace Engineering, University of California Davis, Davis, CA 95616, USA; UC Davis Lung Center, One Shields Avenue, Davis, CA 95616, USA; VA Northern California Health Care System, 10535 Hospital Way, Mather, CA 95655, USA 
First page
155
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
22279040
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3097886376
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.