Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The bit error rate (BER) in relation to the signal-to-noise ratio (SNR) serves as a widely recognized metric for assessing the performance of communication systems. The concept of SNR is so integral that many existing studies presume its definition to be understood, often omitting the specifics of its calculation in their simulations. Notably, the computation of SNR from the perspective of the transmitter yields distinct behaviors and outcomes compared to that from the receiver’s side, particularly when the channel encompasses more than mere noise. Typically, research papers utilize the transmitter-side (or ensemble-average) SNR to benchmark the BER performance across various methodologies. Conversely, the receiver-side (or short-term) SNR becomes pertinent when prioritizing the receiver’s performance. In the context of simulating the long-term evolution (LTE) downlink, applying both SNR calculation approaches reveals that the receiver-side SNR not only produces a significantly lower BER compared to the transmitter-side SNR but also alters the relative BER performance rankings among the channel models tested. It is deduced that while the transmitter-side SNR is apt for broad performance comparisons, it falls short in thoroughly examining the BER behavior of a receiver across varying SNR scenarios. Therefore, the transmitter-side SNR is useful when comparing the performance of the simulated system with other studies. Conversely, if the primary concern is the actual BER performance of the receiver, the receiver-side SNR could provide a more accurate performance assessment.

Details

Title
Which Signal-to-Noise Ratio Is Used in Simulations? Transmitter Side versus Receiver Side: A Study Based on Long Term Evolution Downlink Transmission
Author
Yu-Sun, Liu 1   VIAFID ORCID Logo  ; You, Shingchern D 2   VIAFID ORCID Logo  ; Zong-Ru Jhan 3 ; Meng-Fan, Li 4 

 Department of Electronic Engineering, National Taipei University of Technology, Taipei 10608, Taiwan; [email protected] 
 Department of Computer Science and Information Engineering, National Taipei University of Technology, Taipei 10608, Taiwan 
 Research and Development Department, Actiontec Electronics, Inc., Taipei 106, Taiwan; [email protected] 
 Software Development Department, A-MTK Co., Ltd., New Taipei City 235, Taiwan; [email protected] 
First page
479
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20782489
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3097923390
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.