Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study explores the influence of solution concentration, specifically that of water and ethylene glycol mixtures, on the optical and supercapacitive properties of cobalt tungstate (CoWO4) nanoparticles. CoWO4 nanoparticles were synthesized using varying ratios of water to ethylene glycol to ascertain the optimal conditions for enhanced performance. Detailed characterization was conducted using UV–Vis spectroscopy, photoluminescence (PL) spectroscopy, cyclic voltammetry (CV), and galvanostatic charge–discharge (GCD) to evaluate the optical properties and electrochemical behavior, respectively. The results revealed that the solution concentration significantly impacted the bandgap, absorbance, and emission properties of the CoWO4 nanoparticles. Effective bandgap tuning was achieved by altering the solution concentration. When using only water, the nanoparticles displayed the lowest bandgap of 2.57 eV. In contrast, a solution with equal water and ethylene glycol concentrations resulted in the highest bandgap of 2.65 eV. Additionally, the electrochemical studies demonstrated that the water/ethylene glycol ratio markedly influenced the charge storage capacity and cyclic stability of the nanoparticles. The results indicated that the solvent concentration significantly influenced the crystallinity, particle size, and surface morphology of the CoWO4 nanoparticle nanoparticles, which affected their optical properties and electrochemical performance. Notably, nanoparticles synthesized with a 1.25:0.75 proportion of water to ethylene glycol exhibited superior supercapacitive performance, with a specific capacitance of 661.82 F g−1 at a current density of 7 mA cm−2 and 106% capacitance retention after 8000 charge–discharge cycles. These findings underscore the critical role of solvent composition in tailoring the functional properties of CoWO4 nanoparticles, providing insights for their application in optoelectronic devices and energy storage systems.

Details

Title
Unveiling the Effect of Solution Concentration on the Optical and Supercapacitive Performance of CoWO4 Nanoparticles Prepared via the Solvothermal Method
Author
Mane, Sagar M 1   VIAFID ORCID Logo  ; Teli, Aviraj M 2   VIAFID ORCID Logo  ; Beknalkar, Sonali A 2 ; Shin, Jae Cheol 2 ; Lee, Jaewoong 1   VIAFID ORCID Logo 

 Department of Fiber System Engineering, Yeungnam University, 280 Dehak-Ro, Gyeongsan 38541, Republic of Korea 
 Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea 
First page
203
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
23046740
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3097930031
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.