Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Diffuse axonal injury (DAI) following sudden acceleration and deceleration can lead to cognitive function decline. Various treatments have been proposed. Repetitive transcranial magnetic stimulation (rTMS), a non-invasive stimulation technique, is a potential treatment for enhancing neuroplasticity in cases of brain injury. The therapeutic efficacy of rTMS on cognitive function remains unconfirmed. This study investigated the effects of rTMS and the underlying molecular biomechanisms using a rat model of DAI. Sprague–Dawley rats (n = 18) were randomly divided into two groups: one receiving rTMS after DAI and the other without brain stimulation. All rats were subjected to sudden acceleration and deceleration using a DAI modeling machine to induce damage. MRI was performed to confirm the DAI lesion. The experimental group received rTMS at a frequency of 1 Hz over the frontal cortex for 10 min daily for five days. To assess spatial memory, we conducted the Morris water maze (MWM) test one day post-brain damage and one day after the five-day intervention. A video tracking system recorded the escape latency. After post-MWM tests, all rats were euthanized, and their brain tissues, particularly from the hippocampus, were collected for immunohistochemistry and western blot analyses. The escape latency showed no difference on the MWM test after DAI, but a significant difference was observed after rTMS between the two groups. Immunohistochemistry and western blot analyses indicated increased expression of BDNF, VEGF, and MAP2 in the hippocampal brain tissue of the DAI-T group. In conclusion, rTMS improved cognitive function in the DAI rat model. The increased expression of BDNF, VEGF, and MAP2 in the DAI-T group supports the potential use of rTMS in treating cognitive impairments associated with DAI.

Details

Title
The Effect of Repetitive Transcranial Magnetic Stimulation on Cognition in Diffuse Axonal Injury in a Rat Model
Author
Kim, Hyeong-Min  VIAFID ORCID Logo  ; Hyun-Seok, Jo  VIAFID ORCID Logo  ; Eun-Jong, Kim  VIAFID ORCID Logo  ; Ji-Min, Na  VIAFID ORCID Logo  ; Park, Hyeng-Kyu  VIAFID ORCID Logo  ; Jae-Young, Han; Ki-Hong, Kim; Choi, Insung; Min-Keun Song  VIAFID ORCID Logo 
First page
689
Publication year
2024
Publication date
2024
Publisher
MDPI AG
ISSN
20358385
e-ISSN
20358377
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3097997861
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.