Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The use of graphene oxide (GO) photogenerated electron–hole (e–h+) pairs to degrade pollutants is a novel green method for wastewater treatment. However, the interaction between photosensitive pollutants and a GO–light system remains unclear. In this work, the mechanism of degradation of photosensitive pollutant tetracycline (TC) promoted by GO photogenerated e–h+ pairs was studied. Our studies encompassed the determination of TC removal kinetics, analysis of active substances for TC degradation, identification of degradation products, and computational modeling. Clear evidence shows that a new reaction mechanism of enhanced adsorption and induced generation of reactive oxygen species (ROS) was involved. This mechanism was conducive to significantly enhanced TC removal. Kinetic studies showed a first-order behavior that can be well described by the Langmuir–Hinshelwood model. Radical scavenging experiments confirmed that 1O2, •O2, and holes (h+) were the main active substances for TC degradation. Electron spin resonance analysis indicated that photoexcited TC molecules may transfer electrons to the conduction band of GO to induce the generation of additional ROS. A major transformation product (m/z 459) during TC degradation was identified with liquid chromatography–mass spectrometry. Density functional theory calculation indicated a stronger adsorption between TC and GO under photoirradiation. This mechanism of photo-enhanced adsorption and synergistic induced generation of ROS provides a new strategy for the removal of emerging pollutants in water. Overall, the new mechanism revealed in this work expands the knowledge of applying GO to wastewater treatment and is of great reference value for research in this field.

Details

Title
Mapping Photogenerated Electron–Hole Behavior of Graphene Oxide: Insight into a New Mechanism of Photosensitive Pollutant Degradation
Author
Ni, Kaijie 1   VIAFID ORCID Logo  ; Chen, Yanlong 1 ; Xu, Ruiqi 1 ; Zhao, Yuming 2   VIAFID ORCID Logo  ; Guo, Ming 1   VIAFID ORCID Logo 

 College of Chemistry and Materials Engineering, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China 
 Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X7, Canada 
First page
3765
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3098046944
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.