Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Percolating composites exhibiting negative permittivity have garnered considerable attention due to their promising applications in the realm of electromagnetic shielding, innovative capacitance devices, coil-less inductors, etc. Nano carbon powder/polyvinylidene fluoride (CP/PVDF) percolating composites were fabricated that exhibit Drude-type negative-permittivity behavior upon reaching the CP percolation threshold. This phenomenon is attributed to the formation of a plasmonic state within the interconnected CP network, enabling the delocalization of electrons under the alternating electric field. Furthermore, a significant (nearly two orders of magnitude) increase in the conductivity of sample is observed at a CP content of 12.5 wt%. This abrupt change coincides with the percolation phenomenon, suggesting a transition in the conduction mechanism. To elucidate this behavior, comprehensive analyses of the phase composition, microstructure, AC conductivity, and relative permittivity were performed. Additionally, the sample containing 5 wt% CP exhibits a remarkably high permittivity of 31.5, accompanied by a relatively low dielectric loss (tanδ < 0.2). The findings expand the potential applications of PVDF, while the fabricated percolating composites hold promise for electromagnetic shielding, antennas, and other electromagnetic devices.

Details

Title
Percolation-Triggered Negative Permittivity in Nano Carbon Powder/Polyvinylidene Fluoride Composites
Author
Shi, Guangyue 1 ; Sun, Xiaolei 1   VIAFID ORCID Logo  ; Liu, Yao 2 

 School of Materials Science and Engineering, Tianjin Key Laboratory for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Nankai University, Tianjin 300350, China 
 Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China 
First page
3862
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3098052201
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.