Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In recent years, flexible and wearable biosensor technologies have gained significant attention due to their potential to revolutionize healthcare monitoring. Among the various components involved in these biosensors, the electrode material plays a crucial role in ensuring accurate and reliable detection. In this regard, polymer electrodes, such as Poly(3,4 ethylenedioxythiophene): poly(styrenesulfonate), combined with graphene (PEDOT:PSS/graphene), have emerged as promising candidates due to their unique mechanical properties and excellent electrical conductivity. Understanding the mechanical behavior of these polymer electrodes on flexible substrates is essential to ensure the stability and durability of wearable biosensors. In this paper, PEDOT:PSS/graphene composite was spray-coated on flexible substrates at different growth conditions to explore the effect of the deposition parameters and mode of mechanical loading (longitudinal or transversal) on the electrical and mechanical behavior of the fabricated samples. It was found that the coating grown at lower temperatures and higher spraying pressure exhibited stable behavior no matter the applied stress type.

Details

Title
Behavior of Polymer Electrode PEDOT:PSS/Graphene on Flexible Substrate for Wearable Biosensor at Different Loading Modes
Author
Aleksandrova, Mariya 1   VIAFID ORCID Logo  ; Mateev, Valentin 2   VIAFID ORCID Logo  ; Iliev, Ivo 3   VIAFID ORCID Logo 

 Department of Microelectronics, Technical University of Sofia, 1000 Sofia, Bulgaria 
 Department of Electrical Apparatus, Technical University of Sofia, 1000 Sofia, Bulgaria; [email protected] 
 Department of Electronics, Technical University of Sofia, 1000 Sofia, Bulgaria; [email protected] 
First page
1357
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20794991
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3098097546
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.