Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Under the influences of climate change and human activities, habitat quality (HQ) in inland river basins continues to decline. Studying the spatiotemporal distributions of land use and HQ can provide support for sustainable development strategies of the ecological environment in arid regions. Therefore, this study utilized the SD-PLUS model, InVEST-HQ model, and Geodetector to assess and simulate the land-use changes and HQ in the Tarim River Basin (TRB) at multiple scales (county and grid scales) and scenarios (SSP126, SSP245, and SSP585). The results indicated that (1) the Figure of Merit (FoM) values for Globeland 30, China’s 30 m annual land-cover product, and the Chinese Academy of Sciences (30 m) product were 0.22, 0.12, and 0.15, respectively. A comparison of land-use datasets with different resolutions revealed that the kappa value tended to decline as the resolution decreased. (2) In 2000, 2010, and 2020, the HQ values were 0.4656, 0.4646, and 0.5143, respectively. Under the SSP126 and SSP245 scenarios, the HQ values showed an increasing trend: for the years 2030, 2040, and 2050, they were 0.4797, 0.4834, and 0.4855 and 0.4805, 0.4861, and 0.4924, respectively. Under SSP585, the HQ values first increased and then decreased, with values of 0.4791, 0.4800, and 0.4766 for 2030, 2040, and 2050, respectively. (3) Under three scenarios, areas with improved HQ were mainly located in the southern and northern high mountain regions and around urban areas, while areas with diminished HQ were primarily in the western part of the basin and central urban areas. (4) At the county scale, the spatial correlation was not significant, with Moran’s I ranging between 0.07 and 0.12, except in 2000 and 2020. At the grid scale, the spatial correlation was significant, with clear high- and low-value clustering (Moran’s I between 0.80 and 0.83). This study will assist land-use planners and policymakers in formulating sustainable development policies to promote ecological civilization in the basin.

Details

Title
Predicting Land-Use Change Trends and Habitat Quality in the Tarim River Basin: A Perspective with Climate Change Scenarios and Multiple Scales
Author
Aishan, Tayierjiang 1   VIAFID ORCID Logo  ; Song, Jian 2 ; Halik, Ümüt 1   VIAFID ORCID Logo  ; Betz, Florian 3   VIAFID ORCID Logo  ; Asadilla Yusup 4   VIAFID ORCID Logo 

 College of Ecology and Environment, Xinjiang University, Urumqi 830046, China; [email protected] (T.A.); [email protected] (J.S.); Ministry of Education Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China 
 College of Ecology and Environment, Xinjiang University, Urumqi 830046, China; [email protected] (T.A.); [email protected] (J.S.) 
 Faculty of Mathematics and Geography, University of Eichstaett-Ingolstadt, 85071 Eichstaett, Germany; [email protected] 
 Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; [email protected] 
First page
1146
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
2073445X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3098120190
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.