Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

(1) Background: The adhesion and microbiological behaviour of thermoplastic PETG dental appliance surfaces is governed by roughness parameters. The aim of this research was to evaluate the antibiofilm activity of alkaline peroxide-based disinfectant in Candida albicans biofilms on thermoplastic PETG, related to artificial ageing and surface characteristics, on multiscale levels. (2) Methods: In the present study, two PETG materials were investigated: Crystal® (Bio Art Dental Equipment, Sao Carlos, Brazil), noted as C, and Duran® (Scheu-Dental GmbH, Iserlohn, Germany)—noted as D. Half of the specimens were thermally cycled (TC), resulting in four sample groups, as follows: C, CTC, D, and DTC. Surface roughness was evaluated on different scale topographies. The biofilms were grown on the surfaces. An alkaline peroxide-based disinfectant was used. Statistical analyses were performed. (3) Results: Related to nanoroughness, there are insignificant differences among materials or related to thermocycling. More irregular surfaces are associated with larger grain sizes. After thermocycling, micro-roughness values increase. Disinfectant activity decreases the amount of biofilm developed on the surfaces, significantly in the two groups, but is not correlated to the material and artificial ageing. (4) Conclusion: The impact of surface roughness (Ra) on biofilm constitution is controlled by different scale topographies.

Details

Title
Microbiological Evaluation of Thermoplastic PETG Dental Appliances Related to Surface Characteristics
Author
Porojan, Liliana 1   VIAFID ORCID Logo  ; Bejan, Flavia Roxana 1   VIAFID ORCID Logo  ; Tirziu, Emil 2 ; Gașpar, Cristina Mirabela 2   VIAFID ORCID Logo  ; Moza, Alex Cristian 2   VIAFID ORCID Logo  ; Gherban, Mihaela Ionela 3   VIAFID ORCID Logo  ; Vasiliu, Roxana Diana 1 ; Matichescu, Anamaria 4   VIAFID ORCID Logo 

 Department of Dental Prostheses Technology (Dental Technology), Center for Advanced Technologies in Dental Prosthodontics, Faculty of Dental Medicine, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania; [email protected] (F.R.B.); [email protected] (R.D.V.) 
 Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine Timișoara, University of Life Sciences “King Mihai I” from Romania, Calea Aradului 119, 300645 Timișoara, Romania; [email protected] (E.T.); [email protected] (C.M.G.); [email protected] (A.C.M.) 
 National Institute for Research and Development in Electrochemistry and Condensed Matter, 300569 Timișoara, Romania; [email protected] 
 Department of Preventive, Community Dentistry and Oral Health, Center for Advanced Technologies in Dental Prosthodontics, Faculty of Dental Medicine, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania; [email protected] 
First page
2354
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3098185100
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.