Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Global Navigation Satellite Systems (GNSS)-based position service is widely applied in cities, but the precision varies significantly in different obstruction scenes. Scene recognition is critical for developing scene-adaptive GNSS algorithms. However, the complexity of urban environments and the unevenness of received signal especially in low-cost receivers limit the performance of GNSS-based scene recognition models. Therefore, our study aims to construct a scene recognition model suitable for urban static positioning and low-cost GNSS receivers. Firstly, we divide the scenes into five categories according to application requirements, including open area, high urban canyon, unilateral urban canyon, shade of tree and low urban canyon. We then construct feature vectors from original observation data and consider the geometric relationships between satellites and receivers. The different sensitivity to different scenes is discovered through an analysis of the performance of each feature vector in recognition. Therefore, a GNSS positioning scene recognition model based on multi-channel LSTM (MC-LSTM) is proposed. The results of experiments show that an accuracy of 99.14% can be achieved by our model. Meanwhile, only 0.75 s and 1.95 ms are required in model training per epoch and model prediction per data on a CPU, which presents a significant improvement of over 90% compared with existing works. Furthermore, our model can be transferred into different time periods quickly and can maintain robustness in situations where one or two types of observation data are missed. A maximum accuracy of 81.13% can be achieved when two channels are missed, while 96.06% is attainable when one channel is missed. Therefore, our model has the potential for real applications in complex urban environments.

Details

Title
A Deep-Learning Based GNSS Scene Recognition Method for Detailed Urban Static Positioning Task via Low-Cost Receivers
Author
Li, Yubo 1   VIAFID ORCID Logo  ; Jiang, Zhuojun 1   VIAFID ORCID Logo  ; Chuang Qian 2   VIAFID ORCID Logo  ; Huang, Wenjing 1   VIAFID ORCID Logo  ; Yang, Zeen 1   VIAFID ORCID Logo 

 School of Navigation, Wuhan University of Technology, Wuhan 430063, China; [email protected] (Y.L.); [email protected] (Z.J.); [email protected] (W.H.); [email protected] (Z.Y.) 
 Intelligent Transportation Systems Research Center, Wuhan University of Technology, Wuhan 430063, China 
First page
3077
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3098193839
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.