Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Mapping wall-to-wall forest aboveground biomass (AGB) at large scales is critical for understanding global climate change and the carbon cycle. In previous studies, a regression-based method was commonly used to map the spatially continuous distribution of forest AGB with the aid of optical images, which may suffer from the saturation effect. The Global Ecosystem Dynamics Investigation (GEDI) can collect forest vertical structure information with high precision on a global scale. In this study, we proposed a collaborative kriging (co-kriging) interpolation-based method for mapping spatially continuous forest AGB by integrating GEDI and Sentinel-2 data. First, by fusing spectral features from Sentinel-2 images with vertical structure features from GEDI, the optimal estimation model for footprint-level AGB was determined by comparing different machine-learning algorithms. Second, footprint-level predicted AGB was used as the main variable, with rh95 and B12 as covariates, to build a co-kriging guided interpolation model. Finally, the interpolation model was employed to map wall-to-wall forest AGB. The results showed the following: (1) For footprint-level AGB, CatBoost achieved the highest accuracy by fusing features from GEDI and Sentinel-2 data (R2 = 0.87, RMSE = 49.56 Mg/ha, rRMSE = 27.06%). (2) The mapping results based on the interpolation method exhibited relatively high accuracy and mitigated the saturation effect in areas with higher forest AGB (R2 = 0.69, RMSE = 81.56 Mg/ha, rRMSE = 40.98%, bias = −3.236 Mg/ha). The mapping result demonstrates that the proposed method based on interpolation combined with multi-source data can be a promising solution for monitoring spatially continuous forest AGB.

Details

Title
Co-Kriging-Guided Interpolation for Mapping Forest Aboveground Biomass by Integrating Global Ecosystem Dynamics Investigation and Sentinel-2 Data
Author
Wang, Yingchen 1 ; Wang, Hongtao 1 ; Wang, Cheng 2 ; Zhang, Shuting 1 ; Wang, Rongxi 1 ; Wang, Shaohui 1 ; Duan, Jingjing 1 

 School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China; [email protected] (Y.W.); 
 School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China; [email protected] (Y.W.); ; Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China 
First page
2913
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3098195585
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.