Full Text

Turn on search term navigation

© 2024 Akhtar et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The reliable operation of electrical power transmission systems is crucial for ensuring consumer’s stable and uninterrupted electricity supply. Faults in electrical power transmission systems can lead to significant disruptions, economic losses, and potential safety hazards. A protective approach is essential for transmission lines to guard against faults caused by natural disturbances, short circuits, and open circuit issues. This study employs an advanced artificial neural network methodology for fault detection and classification, specifically distinguishing between single-phase fault and fault between all three phases and three-phase symmetrical fault. For fault data creation and analysis, we utilized a collection of line currents and voltages for different fault conditions, modelled in the MATLAB environment. Different fault scenarios with varied parameters are simulated to assess the applied method’s detection ability. We analyzed the signal data time series analysis based on phase line current and phase line voltage. We employed SMOTE-based data oversampling to balance the dataset. Subsequently, we developed four advanced machine-learning models and one deep-learning model using signal data from line currents and voltage faults. We have proposed an optimized novel glassbox Explainable Boosting (EB) approach for fault detection. The proposed EB method incorporates the strengths of boosting and interpretable tree models. Simulation results affirm the high-efficiency scores of 99% in detecting and categorizing faults on transmission lines compared to traditional fault detection state-of-the-art methods. We conducted hyperparameter optimization and k-fold validations to enhance fault detection performance and validate our approach. We evaluated the computational complexity of fault detection models and augmented it with eXplainable Artificial Intelligence (XAI) analysis to illuminate the decision-making process of the proposed model for fault detection. Our proposed research presents a scalable and adaptable method for advancing smart grid technology, paving the way for more secure and efficient electrical power transmission systems.

Details

Title
Novel glassbox based explainable boosting machine for fault detection in electrical power transmission system
Author
Akhtar, Iqra; Atiq, Shahid; Shahid, Muhammad Umair  VIAFID ORCID Logo  ; Raza, Ali  VIAFID ORCID Logo  ; Nagwan Abdel Samee  VIAFID ORCID Logo  ; Alabdulhafith, Maali
First page
e0309459
Section
Research Article
Publication year
2024
Publication date
Aug 2024
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3098198513
Copyright
© 2024 Akhtar et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.