Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With the rapid advancement of the Internet of Things, network security has garnered increasing attention from researchers. Applying deep learning (DL) has significantly enhanced the performance of Network Intrusion Detection Systems (NIDSs). However, due to its complexity and “black box” problem, deploying DL-based NIDS models in practical scenarios poses several challenges, including model interpretability and being lightweight. Feature selection (FS) in DL models plays a crucial role in minimizing model parameters and decreasing computational overheads while enhancing NIDS performance. Hence, selecting effective features remains a pivotal concern for NIDSs. In light of this, this paper proposes an interpretable feature selection method for encrypted traffic intrusion detection based on SHAP and causality principles. This approach utilizes the results of model interpretation for feature selection to reduce feature count while ensuring model reliability. We evaluate and validate our proposed method on two public network traffic datasets, CICIDS2017 and NSL-KDD, employing both a CNN and a random forest (RF). Experimental results demonstrate superior performance achieved by our proposed method.

Details

Title
Explainable Deep Learning-Based Feature Selection and Intrusion Detection Method on the Internet of Things
Author
Chen, Xuejiao 1   VIAFID ORCID Logo  ; Liu, Minyao 2   VIAFID ORCID Logo  ; Wang, Zixuan 2   VIAFID ORCID Logo  ; Wang, Yun 2   VIAFID ORCID Logo 

 School of Communications, Nanjing Vocational College of Information Technology, Nanjing 210023, China 
 School of Modern Posts, Nanjing University of Posts & Telecommunications, Nanjing 210003, China; [email protected] (M.L.); [email protected] (Z.W.); [email protected] (Y.W.) 
First page
5223
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3098221458
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.