It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Aerosol hygroscopic behavior plays a central role in determining climate effects and environmental influence of atmospheric particulates. Water-soluble organic acids (WSOAs) constitute a significant fraction of organic aerosols. These organic acids have a complex impact on aerosol hygroscopicity due to their physical and chemical interactions with atmospheric inorganic salts. The mixing of WSOAs with inorganic salts exerts a multiple influence on the hygroscopic growth and phase behaviors of aerosol particles, largely depending on the composition ratio, acid properties, particle size and interactions between particle components. The WSOAs play a critical role in determining water uptake characteristics of aerosol particles, especially in the low and moderate RH ranges. The previous studies reveal the occurrence of aerosol chemistry related to chloride/nitrate/ammonium depletions in aerosol droplets containing WSOAs and inorganic salts. The potential influence of WSOAs on the atmospheric recycling of HCl/HNO3/NH3 due to the chloride/nitrate/ammonium depletion may contribute to the atmospheric budget of reactive gases. A fundamental understanding for the hygroscopic behavior and aerosol chemistry of inorganic–WSOA systems is essential for the accurate parameterization of aerosol behaviors in atmospheric models. However, there is still lack of a comprehensive understanding of the hygroscopicity and related aerosol chemistry of internally mixed inorganic–WSOA systems. The present review comprehensively summarizes the impacts of WSOAs on hygroscopicity and phase changes of atmospherically relevant inorganic salts in aerosol particles especially under subsaturated conditions, and overviews the recent advances on aerosol chemistry related to the hygroscopic process for the internally mixed inorganic–WSOA aerosols.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details




1 Guizhou Minzu University, School of Chemical Engineering, Guiyang, People’s Republic of China (GRID:grid.443389.1) (ISNI:0000 0000 9477 4541)
2 University of Science and Technology of China, Department of Environmental Science and Engineering, Hefei, People’s Republic of China (GRID:grid.59053.3a) (ISNI:0000 0001 2167 9639)
3 Jinan Academy of Agricultural Sciences, Jinan, People’s Republic of China (GRID:grid.418033.d) (ISNI:0000 0001 2229 4212)
4 Chinese Academy of Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Beijing, People’s Republic of China (GRID:grid.9227.e) (ISNI:0000000119573309)
5 Chinese Academy of Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Beijing, People’s Republic of China (GRID:grid.9227.e) (ISNI:0000000119573309); University of Chinese Academy of Sciences, Beijing, People’s Republic of China (GRID:grid.410726.6) (ISNI:0000 0004 1797 8419)